816 resultados para Embedded System, Domain Specific Language (DSL), Agenti BDI, Arduino, Agentino
Resumo:
This thesis described the research carried out on the development of a novel hardwired tactile sensing system tailored for the application of a next generation of surgical robotic and clinical devices, namely a steerable endoscope with tactile feedback, and a surface plate for patient posture and balance. Two case studies are examined. The first is a one-dimensional sensor for the steerable endoscope retrieving shape and ‘touch’ information. The second is a two-dimensional surface which interprets the three-dimensional motion of a contacting moving load. This research can be used to retrieve information from a distributive tactile sensing surface of a different configuration, and can interpret dynamic and static disturbances. This novel approach to sensing has the potential to discriminate contact and palpation in minimal invasive surgery (MIS) tools, and posture and balance in patients. The hardwired technology uses an embedded system based on Field Programmable Gate Arrays (FPGA) as the platform to perform the sensory signal processing part in real time. High speed robust operation is an advantage from this system leading to versatile application involving dynamic real time interpretation as described in this research. In this research the sensory signal processing uses neural networks to derive information from input pattern from the contacting surface. Three neural network architectures namely single, multiple and cascaded were introduced in an attempt to find the optimum solution for discrimination of the contacting outputs. These architectures were modelled and implemented into the FPGA. With the recent introduction of modern digital design flows and synthesis tools that essentially take a high-level sensory processing behaviour specification for a design, fast prototyping of the neural network function can be achieved easily. This thesis outlines the challenge of the implementations and verifications of the performances.
Resumo:
With the fast changing global business landscape, manufacturing companies are facing increasing challenge to reduce cost of production, increase equipment utilization and provide innovative products in order to compete with countries with low labour cost and production cost. On of the methods is zero down time. Unfortunately, the current research and industrial solution does not provide user friendly development environment to create “Adaptive microprocessor size with supercomputer performance” solution to reduce downtime. Most of the solutions are PC based computer with off the shelf research software tools which is inadequate for the space constraint manufacturing environment in developed countries. On the other hand, to develop solution for various manufacturing domain will take too much time, there is lacking tools available for rapid or adaptive way of create the solution. Therefore, this research is to understand the needs, trends, gaps of manufacturing prognostics and defines the research potential related to rapid embedded system framework for prognostic.
Resumo:
In the developed world we are surrounded by man-made objects, but most people give little thought to the complex processes needed for their design. The design of hand knitting is complex because much of the domain knowledge is tacit. The objective of this thesis is to devise a methodology to help designers to work within design constraints, whilst facilitating creativity. A hybrid solution including computer aided design (CAD) and case based reasoning (CBR) is proposed. The CAD system creates designs using domain-specific rules and these designs are employed for initial seeding of the case base and the management of constraints. CBR reuses the designer's previous experience. The key aspects in the CBR system are measuring the similarity of cases and adapting past solutions to the current problem. Similarity is measured by asking the user to rank the importance of features; the ranks are then used to calculate weights for an algorithm which compares the specifications of designs. A novel adaptation operator called rule difference replay (RDR) is created. When the specifications to a new design is presented, the CAD program uses it to construct a design constituting an approximate solution. The most similar design from the case-base is then retrieved and RDR replays the changes previously made to the retrieved design on the new solution. A measure of solution similarity that can validate subjective success scores is created. Specification similarity can be used as a guide whether to invoke CBR, in a hybrid CAD-CBR system. If the newly resulted design is suffciently similar to a previous design, then CBR is invoked; otherwise CAD is used. The application of RDR to knitwear design has demonstrated the flexibility to overcome deficiencies in rules that try to automate creativity, and has the potential to be applied to other domains such as interior design.
Resumo:
The influence of text messaging on language has been hotly debated especially in relation to spelling and the lexicon, but the impact of SMS on syntax has received less attention.This article focuses on manipulations within the verbal domain, as language evolution points towards a consistent trend going from synthetic to analytical forms (Bybee et al. 1994), which goes against the need for concision in texting. Based on an authentic corpus of about 500 SMS (Fairon et al. 2006b), the present study shows condensation strategies that are similar to those already described, yet reveals specific features such as the absence of aphaeresis and the scarcity of apocope, as well as the overuse of synthetic forms. It can thus be concluded that while SMS writing displays oral characteristics, it cannot obviously be assimilated to speech; in addition, it may well slow down language evolution and support the conservation of short standard forms.
Resumo:
Presented is webComputing – a general framework of mathematically oriented services including remote access to hardware and software resources for mathematical computations, and web interface to dynamic interactive computations and visualization in a diversity of contexts: mathematical research and engineering, computer-aided mathematical/technical education and distance learning. webComputing builds on the innovative webMathematica technology connecting technical computing system Mathematica to a web server and providing tools for building dynamic and interactive web-interface to Mathematica-based functionality. Discussed are the conception and some of the major components of webComputing service: Scientific Visualization, Domain- Specific Computations, Interactive Education, and Authoring of Interactive Pages.
Resumo:
Due to the rapid growth of the number of digital media elements like image, video, audio, graphics on Internet, there is an increasing demand for effective search and retrieval techniques. Recently, many search engines have made image search as an option like Google, AlltheWeb, AltaVista, Freenet. In addition to this, Ditto, Picsearch, can search only the images on Internet. There are also other domain specific search engines available for graphics and clip art, audio, video, educational images, artwork, stock photos, science and nature [www.faganfinder.com/img]. These entire search engines are directory based. They crawls the entire Internet and index all the images in certain categories. They do not display the images in any particular order with respect to the time and context. With the availability of MPEG-7, a standard for describing multimedia content, it is now possible to store the images with its metadata in a structured format. This helps in searching and retrieving the images. The MPEG-7 standard uses XML to describe the content of multimedia information objects. These objects will have metadata information in the form of MPEG-7 or any other similar format associated with them. It can be used in different ways to search the objects. In this paper we propose a system, which can do content based image retrieval on the World Wide Web. It displays the result in user-defined order.
Resumo:
* The work is partly supported by RFFI grant 08-07-00062-a
Resumo:
Today, the development of domain-specific communication applications is both time-consuming and error-prone because the low-level communication services provided by the existing systems and networks are primitive and often heterogeneous. Multimedia communication applications are typically built on top of low-level network abstractions such as TCP/UDP socket, SIP (Session Initiation Protocol) and RTP (Real-time Transport Protocol) APIs. The User-centric Communication Middleware (UCM) is proposed to encapsulate the networking complexity and heterogeneity of basic multimedia and multi-party communication for upper-layer communication applications. And UCM provides a unified user-centric communication service to diverse communication applications ranging from a simple phone call and video conferencing to specialized communication applications like disaster management and telemedicine. It makes it easier to the development of domain-specific communication applications. The UCM abstraction and API is proposed to achieve these goals. The dissertation also tries to integrate the formal method into UCM development process. The formal model is created for UCM using SAM methodology. Some design errors are found during model creation because the formal method forces to give the precise description of UCM. By using the SAM tool, formal UCM model is translated to Promela formula model. In the dissertation, some system properties are defined as temporal logic formulas. These temporal logic formulas are manually translated to promela formulas which are individually integrated with promela formula model of UCM and verified using SPIN tool. Formal analysis used here helps verify the system properties (for example multiparty multimedia protocol) and dig out the bugs of systems.
Resumo:
Research endeavors on spoken dialogue systems in the 1990s and 2000s have led to the deployment of commercial spoken dialogue systems (SDS) in microdomains such as customer service automation, reservation/booking and question answering systems. Recent research in SDS has been focused on the development of applications in different domains (e.g. virtual counseling, personal coaches, social companions) which requires more sophistication than the previous generation of commercial SDS. The focus of this research project is the delivery of behavior change interventions based on the brief intervention counseling style via spoken dialogue systems. ^ Brief interventions (BI) are evidence-based, short, well structured, one-on-one counseling sessions. Many challenges are involved in delivering BIs to people in need, such as finding the time to administer them in busy doctors' offices, obtaining the extra training that helps staff become comfortable providing these interventions, and managing the cost of delivering the interventions. Fortunately, recent developments in spoken dialogue systems make the development of systems that can deliver brief interventions possible. ^ The overall objective of this research is to develop a data-driven, adaptable dialogue system for brief interventions for problematic drinking behavior, based on reinforcement learning methods. The implications of this research project includes, but are not limited to, assessing the feasibility of delivering structured brief health interventions with a data-driven spoken dialogue system. Furthermore, while the experimental system focuses on harmful alcohol drinking as a target behavior in this project, the produced knowledge and experience may also lead to implementation of similarly structured health interventions and assessments other than the alcohol domain (e.g. obesity, drug use, lack of exercise), using statistical machine learning approaches. ^ In addition to designing a dialog system, the semantic and emotional meanings of user utterances have high impact on interaction. To perform domain specific reasoning and recognize concepts in user utterances, a named-entity recognizer and an ontology are designed and evaluated. To understand affective information conveyed through text, lexicons and sentiment analysis module are developed and tested.^
Resumo:
The real-time embedded systems design requires precise control of the passage of time in the computation performed by the modules and communication between them. Generally, these systems consist of several modules, each designed for a specific task and restricted communication with other modules in order to obtain the required timing. This strategy, called federated architecture, is already becoming unviable in front of the current demands of cost, required performance and quality of embedded system. To address this problem, it has been proposed the use of integrated architectures that consist of one or few circuits performing multiple tasks in parallel in a more efficient manner and with reduced costs. However, one has to ensure that the integrated architecture has temporal composability, ie the ability to design each task temporally isolated from the others in order to maintain the individual characteristics of each task. The Precision Timed Machines are an integrated architecture approach that makes use of multithreaded processors to ensure temporal composability. Thus, this work presents the implementation of a Precision Machine Timed named Hivek-RT. This processor which is a VLIW supporting Simultaneous Multithreading is capable of efficiently execute real-time tasks when compared to a traditional processor. In addition to the efficient implementation, the proposed architecture facilitates the implementation real-time tasks from a programming point of view.
Resumo:
Background - Specific language impairment (SLI) is a common neurodevelopmental disorder, observed in 5–10 % of children. Family and twin studies suggest a strong genetic component, but relatively few candidate genes have been reported to date. A recent genome-wide association study (GWAS) described the first statistically significant association specifically for a SLI cohort between a missense variant (rs4280164) in the NOP9 gene and language-related phenotypes under a parent-of-origin model. Replications of these findings are particularly challenging because the availability of parental DNA is required. Methods - We used two independent family-based cohorts characterised with reading- and language-related traits: a longitudinal cohort (n = 106 informative families) including children with language and reading difficulties and a nuclear family cohort (n = 264 families) selected for dyslexia. Results - We observed association with language-related measures when modelling for parent-of-origin effects at the NOP9 locus in both cohorts: minimum P = 0.001 for phonological awareness with a paternal effect in the first cohort and minimum P = 0.0004 for irregular word reading with a maternal effect in the second cohort. Allelic and parental trends were not consistent when compared to the original study. Conclusions - A parent-of-origin effect at this locus was detected in both cohorts, albeit with different trends. These findings contribute in interpreting the original GWAS report and support further investigations of the NOP9 locus and its role in language-related traits. A systematic evaluation of parent-of-origin effects in genetic association studies has the potential to reveal novel mechanisms underlying complex traits.
Resumo:
Recently, blood oxygen level-dependent (BOLD) functional magnetic resonance imaging (fMRI) has become a routine clinical procedure for localization of language and motor brain regions and has been replacing more invasive preoperative procedures. However, the fMRI results from these tasks are not always reproducible even from the same patient. Evaluating the reproducibility of language and speech mapping is especially complicated due to the complex brain circuitry that may become activated during the functional task. Non-language areas such as sensory, attention, decision-making, and motor brain regions may also be activated in addition to the specific language regions during a traditional sentence-completion task. In this study, I test a new approach, which utilizes 4-minute video-based tasks, to map language and speech brain regions for patients undergoing brain surgery. Results from 35 subjects have shown that the video-based task activates Wernicke’s area, as well as Broca’s area in most subjects. The computed laterality indices, which indicate the dominant hemisphere from that functional task, have indicated left dominance from the video-based tasks. This study has shown that the video-based task may be an alternative method for localization of language and speech brain regions for patients who are unable to complete the sentence-completion task.
Using parent report to assess early lexical production in children exposed to more than one language
Resumo:
Limited expressive vocabulary skills in young children are considered to be the first warning signs of a potential Specific Language Impairment (SLI) (Ellis & Thal, 2008). In bilingual language learning environments, the expressive vocabulary size in each of the child’s developing languages is usually smaller compared to the number of words produced by monolingual peers (e.g. De Houwer, 2009). Nonetheless, evidence shows children’s total productive lexicon size across both languages to be comparable to monolingual peers’ vocabularies (e.g. Pearson et al., 1993; Pearson & Fernandez, 1994). Since there is limited knowledge as to which level of bilingual vocabulary size should be considered as a risk factor for SLI, the effects of bilingualism and language-learning difficulties on early lexical production are often confounded. The compilation of profiles for early vocabulary production in children exposed to more than one language, and their comparison across language pairs, should enable more accurate identification of vocabulary delays that signal a risk for SLI in bilingual populations. These considerations prompted the design of a methodology for assessing early expressive vocabulary in children exposed to more than one language, which is described in the present chapter. The implementation of this methodological framework is then outlined by presenting the design of a study that measured the productive lexicons of children aged 24-36 months who were exposed to different language pairs, namely Maltese and English, Irish and English, Polish and English, French and Portuguese, Turkish and German as well as English and Hebrew. These studies were designed and coordinated in COST Action IS0804 Working Group 3 (WG3) and will be described in detail in a series of subsequent publications. Expressive vocabulary size was measured through parental report, by employing the vocabulary checklist of the MacArthur-Bates Communicative Development Inventory: Words and Sentences (CDI: WS) (Fenson et al., 1993, 2007) and its adaptations to the participants’ languages. Here we describe the novelty of the study’s methodological design, which lies in its attempt to harmonize the use of vocabulary checklist adaptations, together with parental questionnaires addressing language exposure and developmental history, across participant groups characterized by different language exposure variables. This chapter outlines the various methodological considerations that paved the way for meaningful cross-linguistic comparison of the participants’ expressive lexicon sizes. In so doing, it hopes to provide a template for and encourage further research directed at establishing a threshold for SLI risk in children exposed to more than one language.
Resumo:
Research endeavors on spoken dialogue systems in the 1990s and 2000s have led to the deployment of commercial spoken dialogue systems (SDS) in microdomains such as customer service automation, reservation/booking and question answering systems. Recent research in SDS has been focused on the development of applications in different domains (e.g. virtual counseling, personal coaches, social companions) which requires more sophistication than the previous generation of commercial SDS. The focus of this research project is the delivery of behavior change interventions based on the brief intervention counseling style via spoken dialogue systems. Brief interventions (BI) are evidence-based, short, well structured, one-on-one counseling sessions. Many challenges are involved in delivering BIs to people in need, such as finding the time to administer them in busy doctors' offices, obtaining the extra training that helps staff become comfortable providing these interventions, and managing the cost of delivering the interventions. Fortunately, recent developments in spoken dialogue systems make the development of systems that can deliver brief interventions possible. The overall objective of this research is to develop a data-driven, adaptable dialogue system for brief interventions for problematic drinking behavior, based on reinforcement learning methods. The implications of this research project includes, but are not limited to, assessing the feasibility of delivering structured brief health interventions with a data-driven spoken dialogue system. Furthermore, while the experimental system focuses on harmful alcohol drinking as a target behavior in this project, the produced knowledge and experience may also lead to implementation of similarly structured health interventions and assessments other than the alcohol domain (e.g. obesity, drug use, lack of exercise), using statistical machine learning approaches. In addition to designing a dialog system, the semantic and emotional meanings of user utterances have high impact on interaction. To perform domain specific reasoning and recognize concepts in user utterances, a named-entity recognizer and an ontology are designed and evaluated. To understand affective information conveyed through text, lexicons and sentiment analysis module are developed and tested.
Resumo:
This paper focuses on two basic issues: the anxiety-generating nature of the interpreting task and the relevance of interpreter trainees’ academic self-concept. The first has already been acknowledged, although not extensively researched, in several papers, and the second has only been mentioned briefly in interpreting literature. This study seeks to examine the relationship between the anxiety and academic self-concept constructs among interpreter trainees. An adapted version of the Foreign Language Anxiety Scale (Horwitz et al., 1986), the Academic Autoconcept Scale (Schmidt, Messoulam & Molina, 2008) and a background information questionnaire were used to collect data. Students’ t-Test analysis results indicated that female students reported experiencing significantly higher levels of anxiety than male students. No significant gender difference in self-concept levels was found. Correlation analysis results suggested, on the one hand, that younger would-be interpreters suffered from higher anxiety levels and students with higher marks tended to have lower anxiety levels; and, on the other hand, that younger students had lower self-concept levels and higher-ability students held higher self-concept levels. In addition, the results revealed that students with higher anxiety levels tended to have lower self-concept levels. Based on these findings, recommendations for interpreting pedagogy are discussed.