938 resultados para Electrodic reactions


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Interfacial formation processes and reactions between Au and hydrogenated amorphous Si have been studied by photoemission spectroscopy and Auger electron spectroscopy. A three-dimensional growth of Au metal cluster occurs at initial formation of the Au/a-Si:H interface. When Au deposition exceeds a critical time, Au and Si begin interdiffusing and react to create an Au-Si alloy region. Annealing enhances interdiffusion and a Si-rich region exists on the topmost surface of Au films on a-Si:H.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using photoemission spectroscopy and Auger electron spectroscopy, the interfacial formation process and the reactions between Al and hydrogenated amorphous Si are probed, and annealing behaviors of the Al/a-Si:H system are investigated as well. It is found that a three-dimensional growth of Al metal clusters which includes reacted Al and non-reacted metal Al occurs at the initial Al deposition time, reacted Al and Si alloyed layers exist in the Al/a-Si:H interface, and non-reacted Al makes layer-by-layer growth forming a metal Al layer on the sample surface. The interfacial reactions and element interdiffusion of Al/a-Si:H are promoted under the vacuum annealing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Within the framework of a dinuclear system (DNS) model, the evaporation-residue excitation functions and the quasi-fission mass yields in the 48Ca induced fusion reactions are investigated systematically and compared with available experimental data. Maximal production cross sections of superheavy nuclei based on stable actinide targets are obtained. Isotopic trends in the production of the superheavy elements Z = 110, 112–118 based on the actinide isotopic targets are analyzed systematically. Optimal evaporation channels and combinations as well as the corresponding excitation energies are proposed. The possible factors that influencing the isotopic dependence of the production cross sections are analyzed. The formation of the superheavy nuclei based on the isotopes U with different projectiles are also investigated and calculated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Within the concept of the dinuclear system (DNS), a dynamical model is proposed for describing the formation of superheavy nuclei in complete fusion reactions by incorporating the coupling of the relative motion to the nucleon transfer process. The capture of two heavy colliding nuclei, the formation of the compound nucleus and the de-excitation process are calculated by using an empirical coupled channel model, solving a set of microscopically derived master equations numerically and applying statistical theory, respectively.Fusion-fission reactions and evaporation residue excitation functions of synthesizing superheavy nuclei (SHN)are investigated systematically and compared them with available experimental data. The possible factors that affecting the production cross sections of SHN are discussed in this workshop.