987 resultados para Electric field intensities
Resumo:
Response to external electric field (D. C.) of three different varieties of fish namely Puntius ticto, Heteropneustis fossilis and Tilapia mossambica having different anatomical and behavioural characteristics were studied. Clearly distinguished reactions occurred one after another m all the varieties of fish with the increase in field intensity with minor specific variations. These reactions can be broadly classified into initial start (first reaction), forced swimming (galvanotaxis), slackening of body muscle (galvanonarcosis) and state of muscular rigidity (tetanus). The orientation of the organism (projection of nervous element) to the surrounding field has been found to have important bearing on the behaviour reactions. Clearly differentiated anodic taxis and true narcosis set in when fish body axis was parallel to the lines of current conduction. But with greater angle between the body axis and the current lines, fish did not show well marked reactions. Fish body, when perpendicular to current lines responded for anodic curvature and off balance swimming followed by tetanus.
Resumo:
This paper examines the possibility of using a background gas medium to enhance the current available from low threshold carbon cathodes. The field emission current is used to initiate a plasma in the gas medium, and thereby achieve a current multiplication effect. Results on the variation of anode current as a function of electric field and gas pressure are presented. These are compared with model calculations to verify the principles of operation. The influence of ion bombardment on the long term performance thin film carbon cathodes is examined for He and Ar multiplication plasmas. A measure of the influence of current multiplication on display quality is presented by examining light output from two standard low voltage phosphors. Also studied are the influence of doping the carbon with N to lower the threshold voltage for emission as well as the consequent impact on anode current from the plasma.
Resumo:
We present electronically controlled field emission characteristics of arrays of individually ballasted carbon nanotubes synthesized by plasma-enhanced chemical vapor deposition on silicon-on-insulator substrates. By adjusting the source-drain potential we have demonstrated the ability to controllable limit the emission current density by more than 1 order of magnitude. Dynamic control over both the turn-on electric field and field enhancement factor have been noted. A hot electron model is presented. The ballasted nanotubes are populated with hot electrons due to the highly crystalline Si channel and the high local electric field at the nanotube base. This positively shifts the Fermi level and results in a broad energy distribution about this mean, compared to the narrow spread, lower energy thermalized electron population in standard metallic emitters. The proposed vertically aligned carbon nanotube field-emitting electron source offers a viable platform for X-ray emitters and displays applications that require accurate and highly stable control over the emission characteristics.
Resumo:
A good quality graphene is transferred onto honeycomb-like CNTs arrays with inner supporting CNTs. The efficient field emission is demonstrated due to a high aspect ratio protrusions and graphene crack edges. A high efficient current density about 1.2 mA/cm2 at threshold electric field of 7.8 V/μm with a turn-on electric field of 1.8 V/μm at the current density of 10 μA/cm2 is observed due to high localized electric field. Stable field emission is tested in a vacuum chamber. The results are of significance to the development of Graphene based field emitters. © 2013 IEEE.
Resumo:
Rashba spin splitting is a two-dimensional (2D) relativistic effect closely related to spintronics. However, so far there is no pristine 2D material to exhibit enough Rashba splitting for the fabrication of ultrathin spintronic devices, such as spin field effect transistors (SFET). On the basis of first-principles calculations, we predict that the stable 2D LaOBiS2 with only 1 nm of thickness can produce remarkable Rashba spin splitting with a magnitude of 100 meV. Because the medium La2O2 layer produces a strong polar field and acts as a blocking barrier, two counter-helical Rashba spin polarizations are localized at different BiS 2 layers. The Rashba parameter can be effectively tuned by the intrinsic strain, while the bandgap and the helical direction of spin states sensitively depends on the external electric field. We propose an advanced Datta-Das SFET model that consists of dual gates and 2D LaOBiS2 channels by selecting different Rashba states to achieve the on-off switch via electric fields. © 2013 American Chemical Society.
Resumo:
Field emissions (FE) from La-doped zinc oxide (ZnO) films are both experimentally and theoretically investigated. Owing to the La-doped effect, the FE characteristic of ZnO films is remarkably enhanced compared with an undoped sample, and a startling low turn-on electric field of about 0.4 V/mu m (about 2.5 V/mu m for the undoped ZnO films) is obtained at an emission current density of 1 mu A/cm(2) and the stable current density reaches 1 mA/cm(2) at an applied field of about 2.1 V/mu m. A self-consistent theoretical analysis shows that the novel FE enhancement of the La-doped sample may be originated from its smaller work function. Due to the effect of doping with La, the Fermi energy level lifts, electrons which tunnelling from surface barrier are consumedly enhancing, and then leads to a huge change of field emission current. Interestingly, it suggests a new effective method to improve the FE properties of film materials.
Resumo:
Through floating catalyst chemical vapour deposition(CVD) method, well-aligned isolated single-walled carbon nanotubes (SWCNTs) and their bundles were deposited on the metal electrodes patterned on the SiO2/Si surface under ac electric fields at relatively low temperature(280 degrees C). It was indicated that SWCNTs were effectively aligned under ac electric fields after they had just grown in the furnace. The time for a SWCNT to be aligned in the electric field and the effect of gas flow were estimated. Polarized Raman scattering was performed to characterize the aligned structure of SWCNTs. This method would be very useful for the controlled fabrication and preparation of SWCNTs in practical applications.
Resumo:
The influence of a transverse magnetic field up to 13 T at 1.6 K on the current-voltage, I (V), characteristics of a doped GaAs/AlAs superlattice was investigated. Current hysteresis was observed in the domain formation regions of the I (V) at zero magnetic field while applied bias was swept in both up (0-6 V) and down (6-0 V) directions. The magnitude of current hysteresis was reduced and finally disappeared with increasing transverse magnetic field. The effect is explained as the modification of the current density versus electric field characteristic by transverse magnetic fields. Calculated results based on the tunnelling current formula in a superlattice support our interpretation.
Resumo:
We theoretically investigate the energy spectra of two-electron two-dimensional (2e 2D) quantum dots (QDs) confined by triangular potentials and bowl-like potentials in a magnetic field by exact diagonalization in the framework of effective mass theory. An in-plane electric field is,found to contribute to the singlet-triplet transition of the ground state of the 2e 2D QDs confined by triangular or bowl-like potentials in a perpendicular magnetic field. The stronger the in-plane electric field, the smaller the magnetic field for the total spin of the ground states in the dot systems to change from S = 0 to S = 1. However, the influence of an in-plane electric field on the singlet-triplet transition of the ground state of two electrons in a triangular QD modulated by a perpendicular magnetic field is quite small because the triangular potential just deviates from the harmonic potential well slightly. We End that the strength of the perpendicular magnetic field needed for the spin singlet-triplet transition of the ground state of the QD confined by a bowl-like potential is reduced drastically by applying an in-plane electric field.
Resumo:
Fourier transformation (FT) has been used in the theoretical line shape analysis of Franz-Keldysh oscillations (FKOs) in detail by numerical simulations. FKOs from the surface-intrinsic-n(+) GaAs structure were obtained in photoreflectance (PR) measurements with various modulation light intensities and with different strengths of bias light illumination, which were used to change the static electric field in the intrinsic layer of the sample. The FT spectra of the PR spectra, including the real part, imaginary part, and the modulus, were very consistent with the theoretical line shapes. The ratio of the square root of the reduced mass (root mu (L)/root mu (H)) and the ratio of transition strength of the electron heavy hole to the electron light hole were obtained from the PT spectra. In addition, the electric field in the intrinsic layer of the sample without and with bias illumination and the modulation field induced by photomodulation were also obtained. (C) 2000 American Institute of Physics. [S0021-8979(00)02123-X].
Resumo:
We have investigated the influence of transverse magnetic field B up to 14 T at 1.6 K on the tunneling processes of electric field domains in doped weakly coupled GaAs/AlAs superlattices. Three regimes, i.e, stable field domains, current self-sustained oscillations and averaged field distribution are successively observed with increasing B. The mechanisms of switching-over among these regimes are due to B-induced modification of the dependence of the effective electron drift velocity on electric field. The simulated calculation gives a good agreement with the observed experimental results. (C) 2000 Published by Elsevier Science B.V. All rights reserved.
Resumo:
We investigate the influence of a transverse magnetic field on the current-voltage characteristics of a doped GaAs/AlAs superlattice at 1.6 K. The current transport regimes-stable electric field domain formation and current selfoscillation-are observed with increasing transverse magnetic field up to 13 T. Magnetic-field-induced redistribution of electron momentum and energy is identified as the mechanism triggering the switching over of one process to another lending to a change in the dependence of the effective electron drift velocity on electric field. Simulation yields excellent agreement with observed results.
Resumo:
Self-assembled InAs QD dot-in-a-well (DWELL) structures were grown on GaAs substrate by MBE system, and heterojunction modulation-doped field effect transistor (MODFET) was fabricated. The optical properties of the samples show that the photoluminescence of InAs/GaAs self-assembled quantum dot (SAQD) is at 1.265 mu m at 300 K. The temperature-dependence of the abnormal redshift of InAs SAQD wavelength with the increasing temperature was observed, which is closely related with the inhomogeneous size distribution of the InAs quantum dot. According to the electrical measurement, high electric field current-voltage characteristic of the MODFET device were obtained. The embedded InAs QD of the samples can be regard as scattering centers to the vicinity of the channel electrons. The transport property of the electrons in GaAs channel will be modulated by the QD due to the Coulomb interaction. It has been proposed that a MODFET embedded with InAs QDs presents a novel type of field effect photon detector.
Resumo:
Results are reported of electric-field dependence on thermal emission of electrons from the 0.40 eV level at various temperatures in InGaP by means of deep-level transient spectroscopy. The data are analyzed according to the Poole-Frankel emission from the potentials which are assumed to be Coulombic, square well, and Gaussian, respectively. The emission mte from this level is strongly field dependent. It is found that the Gaussian potential model is more reasonable to describe the phosphorus-vacancy-induced potential in InGaP than the Coulombic and square-well ones.
Resumo:
Absorption spectra of YAlO3:Nd for the three crystallographic axes are investigated at room temperature, The spectral strengths indicate that the absorption coefficient of YAlO3:Nd is anisotropic. The anisotropy of the local electric field acting on the rare-earth ion in a laser crystal is considered, An extended Judd-Ofelt theory is applied to calculate the absorption cross sections and oscillator strengths of the electric-dipole transitions in the different principal directions. Three groups of the phenomenological parameters are derived from a least-squares-fitting procedure. We also analyze theoretically the anisotropy of the optical absorption of YAlO3:Nd crystal in detail. (C) 1997 American Institute of Physics.