904 resultados para Drug discovery
Resumo:
Introduction: Centenarians are reservoirs of genetic and environmental information to successful ageing and local centenarian groups may help us to understand some of the factors that contribute to longevity. The current centenarian cohort in Belfast survived the 1970s epidemic of death from coronary heart disease in Northern Ireland, where cardiovascular mortality was almost highest in the world. These centenarians provided an opportunity to assess biological and genetic factors important in cardiovascular risk and ageing. Methods: Thirty-five (27 female, 8 male) centenarians, participants of the Belfast Elderly Longitudinal Free-living Ageing STudy (BELFAST), were community-living and of good cognition at enrolment. Results: Centenarians showed median Body Mass Index (BMI) at 25.7, systolic blood pressure 140mmHg and diastolic blood pressure 90mmHg, and fasting glucose of 5.54 mmol/l with no sex-related difference. Lipoproteins showed median cholesterol 5.3, High Density Lipoprotein (HDL) 1.10 and Low Density Lipoprotein (LDL) 3.47umol/l respectively. Centenarian smokers showed no different blood pressure or lipid measurements compared with non-smokers. Malondialdehyde, a measure of lipid peroxidation, was low at 1.19 umol/l, and measures of antioxidant status were varied. Male centenarians did not carry any of the vascular risk genotypes studied-ApoE4 for Apolipoprotein E (ApoE), DD for Angiotensinogen Converting Enzyme (ACE) and tt for 5,10-methylenetetrahydrofolate reductase (MTFHR), though this was not true for female centenarians.. Conclusions: This small local study shows that Belfast centenarians carry a reasonably favourable risk profile, except for age, with respect to cardiovascular disease. There is also some evidence that vascular risk factors and genotypes may be tolerated differently between the male and female centenarians. Maintaining a favourable cardiovascular risk profile seems likely to improve the chance of becoming a centenarian, especially for males.
Design, synthesis and photodynamic antimicrobial activity of ruthenium trischelate diimine complexes
Resumo:
In this study, we describe, for the first time, the synthesis and photophysical and microbiological investigation of ruthenium trischelate diimine complexes designed so as to possess properties specifically suited for use in Photodynamic antimicrobial chemotherapy (PACT). Of the three compounds investigated, one ([Ru(dmob)(3)]Cl-2) has demonstrated considerable promise as a photosensitiser for use in PACT. As a result, this compound is now the subject of comprehensive chemical, toxicological and formulation studies.
Resumo:
Reductive cyclisation of ail E-vinyl bromide with ail allylic acetate proceeds under palladium catalysis 10 give the 8-dehydropumiliotoxin skeleton, a potential advanced precursor to 8-deoxypumiliotoxin alkaloids. Control of the stereochemistry of the E-vinyl bromide precursor is achieved readily using the Kogen or Bruckner bromophosphonate reagents and the reductive cyclisation proceeds with retention of the vinyl bromide stereochemistry. The mechanism for the cyclisation involves an in situ conversion of the allylic acetate to ail allyl stannane followed by ail intramolecular Stille-type coupling.
Resumo:
Catalytic hydrogenation of dihydroindolizidinone occurred preferentially from the endo-face giving rapid entry to (8R,8aS)-8-methylhexahydroindolizin-5-one, a key intermediate in the synthesis of 5,8-disubstituted indolizidines and deoxypumiliotoxin 25 1 H. The selectivity could be improved further by diimide reduction though this also resulted in some oxidation of the alkene to the diene. The basis of the unusual stereoselectivity in the diimide reduction is believed to be stereoelectronic in origin. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
The tricyclic core of martinelline and martinellic acid was rapidly assembled utilising an imino Diels-Alder reaction of an imine derived from cinnamaldehyde with a cyclic enamide. The cycloaddition was completely regioselective though the exo endo selectivity was poor. These diastercoisomers were readily separated by flash chromatography and the relative stereochemistry of the exo-isomer confirmed by single crystal X-ray crystallography. This intermediate was converted to the central core of the aforementioned alkaloids in five additional synthetic operations. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
Piclavines AI and A2 have been synthesised for the first time. The route is short with the key step being the reaction of a bicyclic N-acyl iminium ion with 3-trimethysilyl-1-decene. This convergent strategy gave exclusively compounds in which the pendant decenyl group was axial, as a 6:1 mixture of E:Z-alkene diastereoisomers. Reduction of the lactam carbonyl group gave a 6:1 mixture of piclavines Al and A2, (C) 2000 Published by Elsevier Science Ltd.
Resumo:
Treatment of the bicyclic iminium ion derived from 5-methoxyhexahydroindolizidin-3-one with allyltrimethylsilane gave exclusively the diastereoisomer in which the allyl group was axial. This substrate is a useful precursor to 5-propyl-3-alkylindolizidine alkaloids. (C) 1999 Elsevier Science Ltd. All rights reserved.
Resumo:
The discovery that the hypotensive sequela of envenomation by the South American viper, Bothrops jararaca, was mediated by peptides, represented a milestone in drug discovery research that led to the introduction of ACE inhibitors. These bradykinin-potentiating peptides (BPPs) have been found in the venoms of many species of viper and molecular cloning of biosynthetic precursors has revealed that each encodes several different BPPs in tandem with a single copy of a C-type natriuretic peptide (CNP) located at the C-terminus. Venoms of the African forest vipers (Atheris) have been poorly studied possibly because they do not represent a major danger to humans. However, initial studies have indicated that they contain some of the “classical” protein toxins of viper venoms and a novel class of peptide, the polyglycine/polyhistidine (pGpH) peptides. These peptides occur in several molecular forms with different numbers of repetitive glycine and histidine repeats. We have cloned the biosynthetic precursor of A. squamigera pGpH peptides from a venom-derived cDNA library and have confirmed that a single copy of CNP is located at the C-terminus and additionally that, like BPPs in other vipers, pGpH peptides are encoded in tandem within this single precursor. Solid phase peptide synthesis of pGpH peptides has proven to be extremely difficult but is progressing and acquisition of synthetic replicates of each peptide is a necessary prerequisite for systematic pharmacological characterisation as establishment of a biological function for these peptides remains elusive. pGpH peptides may prove to play a role as fundamental as that of the BPPs.
Resumo:
The role of rhodopsin as a structural prototype for the study of the whole superfamily of G protein-coupled receptors (GPCRs) is reviewed in an historical perspective. Discovered at the end of the nineteenth century, fully sequenced since the early 1980s, and with direct three-dimensional information available since the 1990s, rhodopsin has served as a platform to gather indirect information on the structure of the other superfamily members. Recent breakthroughs have elicited the solution of the structures of additional receptors, namely the beta 1- and beta 2-adrenergic receptors and the A(2A) adenosine receptor, now providing an opportunity to gauge the accuracy of homology modeling and molecular docking techniques and to perfect the computational protocol. Notably, in coordination with the solution of the structure of the A(2A) adenosine receptor, the first "critical assessment of GPCR structural modeling and docking" has been organized, the results of which highlighted that the construction of accurate models, although challenging, is certainly achievable. The docking of the ligands and the scoring of the poses clearly emerged as the most difficult components. A further goal in the field is certainly to derive the structure of receptors in their signaling state, possibly in complex with agonists. These advances, coupled with the introduction of more sophisticated modeling algorithms and the increase in computer power, raise the expectation for a substantial boost of the robustness and accuracy of computer-aided drug discovery techniques in the coming years.
Resumo:
Accurate in silico models for the quantitative prediction of the activity of G protein-coupled receptor (GPCR) ligands would greatly facilitate the process of drug discovery and development. Several methodologies have been developed based on the properties of the ligands, the direct study of the receptor-ligand interactions, or a combination of both approaches. Ligand-based three-dimensional quantitative structure-activity relationships (3D-QSAR) techniques, not requiring knowledge of the receptor structure, have been historically the first to be applied to the prediction of the activity of GPCR ligands. They are generally endowed with robustness and good ranking ability; however they are highly dependent on training sets. Structure-based techniques generally do not provide the level of accuracy necessary to yield meaningful rankings when applied to GPCR homology models. However, they are essentially independent from training sets and have a sufficient level of accuracy to allow an effective discrimination between binders and nonbinders, thus qualifying as viable lead discovery tools. The combination of ligand and structure-based methodologies in the form of receptor-based 3D-QSAR and ligand and structure-based consensus models results in robust and accurate quantitative predictions. The contribution of the structure-based component to these combined approaches is expected to become more substantial and effective in the future, as more sophisticated scoring functions are developed and more detailed structural information on GPCRs is gathered.