945 resultados para Digital Signal Processing
Resumo:
The Dirichlet process mixture model (DPMM) is a ubiquitous, flexible Bayesian nonparametric statistical model. However, full probabilistic inference in this model is analytically intractable, so that computationally intensive techniques such as Gibbs sampling are required. As a result, DPMM-based methods, which have considerable potential, are restricted to applications in which computational resources and time for inference is plentiful. For example, they would not be practical for digital signal processing on embedded hardware, where computational resources are at a serious premium. Here, we develop a simplified yet statistically rigorous approximate maximum a-posteriori (MAP) inference algorithm for DPMMs. This algorithm is as simple as DP-means clustering, solves the MAP problem as well as Gibbs sampling, while requiring only a fraction of the computational effort. (For freely available code that implements the MAP-DP algorithm for Gaussian mixtures see http://www.maxlittle.net/.) Unlike related small variance asymptotics (SVA), our method is non-degenerate and so inherits the “rich get richer” property of the Dirichlet process. It also retains a non-degenerate closed-form likelihood which enables out-of-sample calculations and the use of standard tools such as cross-validation. We illustrate the benefits of our algorithm on a range of examples and contrast it to variational, SVA and sampling approaches from both a computational complexity perspective as well as in terms of clustering performance. We demonstrate the wide applicabiity of our approach by presenting an approximate MAP inference method for the infinite hidden Markov model whose performance contrasts favorably with a recently proposed hybrid SVA approach. Similarly, we show how our algorithm can applied to a semiparametric mixed-effects regression model where the random effects distribution is modelled using an infinite mixture model, as used in longitudinal progression modelling in population health science. Finally, we propose directions for future research on approximate MAP inference in Bayesian nonparametrics.
Resumo:
In this thesis, Ph.D candidate presents a compact sensor node (SN) designed for long-term and real-time acoustic emission (AE) monitoring of above ground storage tanks (ASTs). Each SN exploits up to three inexpensive low-frequency sensors based on piezoelectric diaphragms for effective leakage detection, and it is capable by means of built-in Digital Signal Processing functionalities to process the acquired time waveforms extracting the AE features usually required by testing protocols. Alternatively, capability to plug three high frequency AE sensors to a SN for corrosion simulated phenomena detection is envisaged and demonstrated. Another innovative aspect that the Ph.D candidate presents in this work is an alternative mathematical model of corrosion location on the bottom of the AST. This approach implies considering the three-dimensional localization model versus the two-dimensional commonly used according to the literature. This approach is aimed at significant optimization in the number of sensors in relation to the standard approach for solving localization problems as well as to allow filtering the false AE events related to the condensate droplets from AST ceiling. The technological implementation of this concept required the solution of a number of technical problems, such as the precise time of arrival (ToA) signal estimation, vertical localization of the AE source and multilaration solution that were discussed in detail in this work. To validate the developed prototype, several experimental campaigns were organized that included the simulation of target phenomena both in laboratory conditions and on a real water storage tank. The presented test results demonstrate the successful application of the developed AE system both for simulated leaks and for corrosion processes on the tank bottom. Mathematical and technological algorithms for localization and characterization of AE signals implemented during the development of the prototype are also confirmed by the test results.
Resumo:
I Phase-Locked Loops sono circuiti ancora oggi utilizzati per la generazione di segnali coerenti in frequenza e in fase con i segnali in ingresso, motivo per cui sono uno degli strumenti della radio scienza per la ricostruzione dei segnali scambiati con le sonde e nascosti dal rumore accumulato nel tragitto che separa le sonde stesse dalle stazioni di tracking a terra. Questa tesi illustra l'implementazione di un PLL digitale linearizzato in Matlab e Simulink in una nuova veste rispetto al modello implementato durante l'attività di tirocinio curricolare, al fine di migliorarne le prestazioni per bassi carrier-to-noise density ratios. Il capitolo 1 si compone di due parti: la prima introduce all'ambito nel quale si inserisce il lavoro proposto, ossia la determinazione d'orbita; la seconda illustra i fondamenti della teoria dei segnali. Il capitolo 2 è incentrato sull'analisi dei Phase-Locked Loops, partendo da un'introduzione teorica e approdando all'implementazione di un modello in Simulink. Il capitolo 3, infine, mostra i risultati dell'applicazione del modello implementato in Simulink nell'analisi dei segnali di una missione realmente svolta.
Resumo:
Thesis (M. S.)--University of Illinois at Urbana-Champaign.
Resumo:
Theories of sparse signal representation, wherein a signal is decomposed as the sum of a small number of constituent elements, play increasing roles in both mathematical signal processing and neuroscience. This happens despite the differences between signal models in the two domains. After reviewing preliminary material on sparse signal models, I use work on compressed sensing for the electron tomography of biological structures as a target for exploring the efficacy of sparse signal reconstruction in a challenging application domain. My research in this area addresses a topic of keen interest to the biological microscopy community, and has resulted in the development of tomographic reconstruction software which is competitive with the state of the art in its field. Moving from the linear signal domain into the nonlinear dynamics of neural encoding, I explain the sparse coding hypothesis in neuroscience and its relationship with olfaction in locusts. I implement a numerical ODE model of the activity of neural populations responsible for sparse odor coding in locusts as part of a project involving offset spiking in the Kenyon cells. I also explain the validation procedures we have devised to help assess the model's similarity to the biology. The thesis concludes with the development of a new, simplified model of locust olfactory network activity, which seeks with some success to explain statistical properties of the sparse coding processes carried out in the network.
Resumo:
Dissertação para obtenção do grau de Mestre em Engenharia Electrotécnica Ramo de Automação e Electrónica Industrial
Resumo:
Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Electrical and Computer Engineering of the Faculdade de Ciências e Tecnologia of Universidade Nova de Lisboa
Resumo:
Red blood cell (RBC) parameters such as morphology, volume, refractive index, and hemoglobin content are of great importance for diagnostic purposes. Existing approaches require complicated calibration procedures and robust cell perturbation. As a result, reference values for normal RBC differ depending on the method used. We present a way for measuring parameters of intact individual RBCs by using digital holographic microscopy (DHM), a new interferometric and label-free technique with nanometric axial sensitivity. The results are compared with values achieved by conventional techniques for RBC of the same donor and previously published figures. A DHM equipped with a laser diode (lambda = 663 nm) was used to record holograms in an off-axis geometry. Measurements of both RBC refractive indices and volumes were achieved via monitoring the quantitative phase map of RBC by means of a sequential perfusion of two isotonic solutions with different refractive indices obtained by the use of Nycodenz (decoupling procedure). Volume of RBCs labeled by membrane dye Dil was analyzed by confocal microscopy. The mean cell volume (MCV), red blood cell distribution width (RDW), and mean cell hemoglobin concentration (MCHC) were also measured with an impedance volume analyzer. DHM yielded RBC refractive index n = 1.418 +/- 0.012, volume 83 +/- 14 fl, MCH = 29.9 pg, and MCHC 362 +/- 40 g/l. Erythrocyte MCV, MCH, and MCHC achieved by an impedance volume analyzer were 82 fl, 28.6 pg, and 349 g/l, respectively. Confocal microscopy yielded 91 +/- 17 fl for RBC volume. In conclusion, DHM in combination with a decoupling procedure allows measuring noninvasively volume, refractive index, and hemoglobin content of single-living RBCs with a high accuracy.
Resumo:
Digital holographic microscopy (DHM) allows optical-path-difference (OPD) measurements with nanometric accuracy. OPD induced by transparent cells depends on both the refractive index (RI) of cells and their morphology. This Letter presents a dual-wavelength DHM that allows us to separately measure both the RI and the cellular thickness by exploiting an enhanced dispersion of the perfusion medium achieved by the utilization of an extracellular dye. The two wavelengths are chosen in the vicinity of the absorption peak of the dye, where the absorption is accompanied by a significant variation of the RI as a function of the wavelength.
Resumo:
We have developed a digital holographic microscope (DHM), in a transmission mode, especially dedicated to the quantitative visualization of phase objects such as living cells. The method is based on an original numerical algorithm presented in detail elsewhere [Cuche et al., Appl. Opt. 38, 6994 (1999)]. DHM images of living cells in culture are shown for what is to our knowledge the first time. They represent the distribution of the optical path length over the cell, which has been measured with subwavelength accuracy. These DHM images are compared with those obtained by use of the widely used phase contrast and Nomarski differential interference contrast techniques.
Resumo:
The Cherenkov light flashes produced by Extensive Air Showers are very short in time. A high bandwidth and fast digitizing readout, therefore, can minimize the influence of the background from the light of the night sky, and improve the performance in Cherenkov telescopes. The time structure of the Cherenkov image can further be used in single-dish Cherenkov telescopes as an additional parameter to reduce the background from unwanted hadronic showers. A description of an analysis method which makes use of the time information and the subsequent improvement on the performance of the MAGIC telescope (especially after the upgrade with an ultra fast 2 GSamples/s digitization system in February 2007) will be presented. The use of timing information in the analysis of the new MAGIC data reduces the background by a factor two, which in turn results in an enhancement of about a factor 1.4 of the flux sensitivity to point-like sources, as tested on observations of the Crab Nebula.
Resumo:
The multidimensional process of physical, psychological, and social change produced by population ageing affects not only the quality of life of elderly people but also of our societies. Some dimensions of population ageing grow and expand over time (e.g. knowledge of the world events, or experience in particular situations), while others decline (e.g. reaction time, physical and psychological strength, or other functional abilities like reduced speed and tiredness). Information and Communication Technologies (ICTs) can help elderly to overcome possible limitations due to ageing. As a particular case, biometrics can allow the development of new algorithms for early detection of cognitive impairments, by processing continuous speech, handwriting or other challenged abilities. Among all possibilities, digital applications (Apps) for mobile phones or tablets can allow the dissemination of such tools. In this article, after presenting and discussing the process of population ageing and its social implications, we explore how ICTs through different Apps can lead to new solutions for facing this major demographic challenge.
Resumo:
In order to develop applications for z;isual interpretation of medical images, the early detection and evaluation of microcalcifications in digital mammograms is verg important since their presence is often associated with a high incidence of breast cancers. Accurate classification into benign and malignant groups would help improve diagnostic sensitivity as well as reduce the number of unnecessa y biopsies. The challenge here is the selection of the useful features to distinguish benign from malignant micro calcifications. Our purpose in this work is to analyse a microcalcification evaluation method based on a set of shapebased features extracted from the digitised mammography. The segmentation of the microcalcifications is performed using a fixed-tolerance region growing method to extract boundaries of calcifications with manually selected seed pixels. Taking into account that shapes and sizes of clustered microcalcifications have been associated with a high risk of carcinoma based on digerent subjective measures, such as whether or not the calcifications are irregular, linear, vermiform, branched, rounded or ring like, our efforts were addressed to obtain a feature set related to the shape. The identification of the pammeters concerning the malignant character of the microcalcifications was performed on a set of 146 mammograms with their real diagnosis known in advance from biopsies. This allowed identifying the following shape-based parameters as the relevant ones: Number of clusters, Number of holes, Area, Feret elongation, Roughness, and Elongation. Further experiments on a set of 70 new mammogmms showed that the performance of the classification scheme is close to the mean performance of three expert radiologists, which allows to consider the proposed method for assisting the diagnosis and encourages to continue the investigation in the sense of adding new features not only related to the shape
Resumo:
Digital radiography in the inspection of welded pipes to be installed under deep water offshore gas and oil pipelines, like a presalt in Brazil, in the paper has been investigated. The aim is to use digital radiography for nondestructive testing of welds as it is already in use in the medical, aerospace, security, automotive, and petrochemical sectors. Among the current options, the DDA (Digital Detector Array) is considered as one of the best solutions to replace industrial films, as well as to increase the sensitivity to reduce the inspection cycle time. This paper shows the results of this new technique, comparing it to radiography with industrial films systems. In this paper, 20 test specimens of longitudinal welded pipe joints, specially prepared with artificial defects like cracks, lack of fusion, lack of penetration, and porosities and slag inclusions with varying dimensions and in 06 different base metal wall thicknesses, were tested and a comparison of the techniques was made. These experiments verified the purposed rules for parameter definitions and selections to control the required digital radiographic image quality as described in the draft international standard ISO/DIS 10893-7. This draft is first standard establishing the parameters for digital radiography on weld seam of welded steel pipes for pressure purposes to be used on gas and oil pipelines.
Resumo:
This paper addresses the problem of processing biological data, such as cardiac beats in the audio and ultrasonic range, and on calculating wavelet coefficients in real time, with the processor clock running at a frequency of present application-specified integrated circuits and field programmable gate array. The parallel filter architecture for discrete wavelet transform (DWT) has been improved, calculating the wavelet coefficients in real time with hardware reduced up to 60%. The new architecture, which also processes inverse DWT, is implemented with the Radix-2 or the Booth-Wallace constant multipliers. One integrated circuit signal analyzer in the ultrasonic range, including series memory register banks, is presented. © 2007 IEEE.