957 resultados para Degradation of phenols


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents the results concerning the degradation of the pesticide carbaryl comparing two methods: electrochemical (EC) and photo-assisted electrochemical (PAEC). The experimental variables of applied current density, electrolyte flow-rate and initial carbaryl concentration were investigated. The results demonstrate that the electrochemical degradation of carbaryl was greatly enhanced when simultaneous UV light was applied. The greatest difference between the PAEC and EC method was apparent when lower current densities were applied. The extent of COD removal was much enhanced for the combined method, independent of the applied current density. It should be noted that the complete removal of carbaryl was achieved with out the need to add NaCl to the reaction mixture, avoiding the risk of chlorinated organic species formation. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work assesses the photocatalytic (TiO2/UV) degradation of a simulated acid dye bath (Yellow 3, Red 51, Blue 74, and auxiliary chemicals). Color and phytotoxicity removal were monitored by spectrophotometry and lettuce (Lactuca sativa) seeds as the test organism, respectively. Mineralization was determined by DOC analyses. Photocatalytic, photolytic, and adsorption experiments were performed, showing that adsorption was negligible. After 240 minutes of irradiation, it was achieved 96% and 78% of color removal with photocatalysis and photolysis, respectively. 37% of mineralization occurred with photocatalysis only. The dye bath was rendered completely non-toxic after 60 minutes of photocatalytic treatment; the same result was only achieved with photolysis after 90 minutes. A kinetic model composed of two first-order in series reactions was used. The first photocatalytic decolorization rate constant was k(1) = 0.062 min(-1) and the second k(2) = 0.0043 min(-1), approximately two times greater than the photolytic ones.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electrochemical activation and physical degradation of boron-doped diamond (BDD) electrodes with different boron doping levels after repeated cathodic pretreatments are reported. Galvanostatic cathodic pretreatment passing up to -14000 C cm(-2) in steps of -600 C cm(-2) using -1 A cm(-2) caused significant physical degradation of the BDD surface, with film detachment in some areas. Because of this degradation, a great increase in the electrochemically active area was observed in Tafel plots for the hydrogen evolution reaction (HER) in acid media. The minimum cathodic pretreatment needed for the electrochemical activation of the BDD electrodes without producing any observable physical degradation on the BDD surfaces was determined using electrochemical impedance spectroscopy (EIS) measurements and cyclic voltammetry: -9 C cm(-2), passed at -1 A cm(-2). This optimized cathodic pretreatment can be safely used when electrochemical experiments are carried out on BDD electrodes with doping levels in the range between 800 and 8000 ppm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a degradation study of the pesticide atrazine using photo-assisted electrochemical methods at a dimensionally stable anode (DSA (R)) of nominal composition Ti/Ru(0.3)Ti(0.7)O(2) in a prototype reactor. The effects of current density, electrolyte flow-rate, as well as the use of different atrazine concentrations are reported. The results indicate that the energy consumption is substantially reduced for the combined photochemical and electrochemical processes when compared to the isolated systems. It is observed that complete atrazine removal is achieved at low current densities when using the combined method, thus reducing the energy required to operate the electrochemical system. The results also include the investigation of the phytotoxicity of the treated solutions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present study, photo-assisted electrochemical degradation of real textile wastewater was performed. Degradation assays were performed at constant current (40 mA cm(-2)) in a combined electro/photochemical flow-cell using a Ti/Ru(0.3)Ti(0.7)O(2) DSA(R) type electrode. The results show that the method is capable of removing color and chemical oxygen demand (COD) from the effluent. Additionally, the effect of initial pH and type of supporting electrolyte (Na(2)SO(4) or NaCl) was investigated. The principal figures of merit used in this study were COD removal and color removal (605 nm). The results show that up to 72% color and up to 59% COD removal in 120 min is possible under the operating conditions employed. Studies of the phytotoxicity of the wastewater before and after the photo-assisted degradation assays are also presented and the results demonstrate that the toxicity of the effluent is dependent on the length of electrolysis time and the treatment procedure employed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Alachlor has been widely used in agriculture all over the world. It is suggested that it may be a carcinogen and an environmental estrogen. The aim of this work was to verify the degradation the alachlor by gamma radiation. Gamma radiation from (60)Co was used to degrade the alachlor herbicide in water and methanol solution. The alachlor in water and alcohol solution in the concentration of 100 mgL(-1) was irradiated with doses of 0.25-50 kGy, at dose rate 5-6 and 2.7 kGyh(-1). High performance liquid chromatography was used as an analytical technique to determine the degradation rate of herbicide studied.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work assesses the photocatalytic (TiO(2)/UV) degradation of a simulated reactive dye bath (Black 5, Red 239, Yellow 17, and auxiliary chemicals). Color removal was monitored by spectrophotometry. Mineralization was determined by DOC analyses. Photocatalytic, photolytic, and adsorption experiments were performed, showing that adsorption was negligible. After 30 min of irradiation, it was achieved 97% and 40% of color removal with photocatalysis and photolysis, respectively. No mineralization occurred within 30 min. A kinetic model composed of two, first-order in-series reactions was used. The first photocatalytic decolorization rate constant was k(1) = 2.6 min(-1) and the second k(2) = 0.011 min(-1). The fast decolorization of Reactive Black 5 dye is an indication that the number of azo and vinylsulfone groups in the dye molecule maybe a determining factor for the increased photolytic and photocatalytic color removal and degradation rates. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The photocatalytic degradation of phenol in aqueous suspensions of TiO(2) under different salt concentrations in an annular reactor has been investigated. In all cases, complete removal of phenol and mineralization degrees above 90% were achieved. The reactor operational parameters were optimized and its hydrodynamics characterized in order to couple mass balance equations with kinetic ones. The photodegradation of the organics followed a Langmuir-Hinshelwood-Hougen- Watson lumped kinetics. From GC/MS analyses, several intermediates formed during oxidation have been identified. The main ones were catechol, hydroquinone, and 3-phenyl-2-propenal, in this order. The formation of negligible concentrations of 4-chlorophenol was observed only in high salinity medium. Acute toxicity was determined by using Artemia sp. as the test organism, which indicated that intermediate products were all less toxic than phenol and a significant abatement of the overall toxicity was accomplished, regardless of the salt concentration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A fixed bed photocatalytic reactor has been designed and built with a UV
radiation source. Ti02 pellets were placed on the three fixed beds within the
reactor. Acetone was used as an indicator of volatile organic compounds (VOCs) during the experiment. Under the flow rate of 12.75 l/min, the oxidation efficiencies were obtained at four different concentrations of acetone laden gas streams ranged from 40ppm to 250ppm. It was found that the lower the acetone concentration of the untreated inlet gas, the higher the oxidation efficiency; the obtained oxidation efficiency was in the range of 40-70% for various concentrations of untreated gases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A major problem in many developing countries is the degradation of commons. This degradation has occurred on account of the lack of fulfilment of the basic needs of the poor, free riding and ill–defined property rights. As these goods are essential for the survival of these people, they have to access these items from commons. This results in regular raids to common land for resources and also to private houses (for example, in New Delhi) which are not guarded for water. A variant of the agricultural household model is used to analyse the above problem. Several propositions are established and it is demonstrated that degradation can occur at both a low and high price of basic needs. This result has important policy implications as it demonstrates that land or common degradation cannot be solved by just using the price system. Properly defined property rights and provision of basic goods in kind may resolve the problem of degradation of commons.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In anaerobic degradation of substrates containing mainly particulate organic matter, solids hydrolysis is rate-limiting. In these investigations, the particle size of various substrates was reduced by comminution to support hydrolysis. Two positive effects of comminution were observed. For substrates with high fibre content, which are particularly resistant to biodegradation, a significant improvement of the degradation degree was observed as a result of comminution. Secondly, for all substrates tested, and particularly for those rich in fibres, the degradation rate of comminuted samples was significantly higher. The first reason for both effects is an increase of the sample surface area. Several methods for measuring the specific surface area of organic materials, including particle size analysis, Nitrogen-adsorption and enzyme adsorption, were used and compared for the purpose of this study, where the surface area accessible to microbial enzymes is critical. The significance of the surface area in anaerobic degradation of particulate substrates was investigated through a kinetic model where the hydrolysis rate was based on the sample surface area. Good agreements were obtained between model and experiments carried out with samples of various specific surface areas. These results reinforced the significance of the sample surface area in anaerobic degradation processes. However, other effects of comminution responsible for the increased degradation degree and degradation rate were identified and discussed. These include: the increase of dissolved compounds due to cell rupture, exposition of surface areas previously inaccessible for microbial degradation, and alteration of the sample structure such as the lignin-cellulose arrangements.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Photocatalytic oxidation (PCO) process is an effective way to deal with organic pollutants in wastewater which could be difficult to be degraded by conventional biological treatment methods. Normally the TiO2 powder in nanometre size range was directly used as photocatalyst for dye degradation in wastewater. However the titanium dioxide powder was arduous to be recovered from the solution after treatment. In this application, a new form of TiO2 (i.e. pillar pellets ranging from 2.5 to 5.3 mm long and with a diameter of 3.7 mm) was used and investigated for photocatalytic degradation of textile dye effluent. A test system was built with a flat plate reactor (FPR) and UV light source (blacklight and solar simulator as light source respectively) for investigating the effectiveness of the new form of TiO2. It was found that the photocatalytic process under this configuration could efficiently remove colours from textile dyeing effluent. Comparing with the TiO2 powder, the pellet was very easy to recovered from the treated solution and can be reused in multiple times without the significant change on the photocatalytic property. The results also showed that to achieve the same photocatalytic performance, the FPR area by pellets was about 91% smaller than required by TiO2 powder. At least TiO2 pellet could be used as an alternative form of photocatalyst in applications for textile effluent treatment process, also other wastewater treatment processes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Volatile Organic Compounds (VOCs) are air pollutants that come from burning fossil fuels and industrial emissions. They have potentially adverse health effects being carcinogenic and highly persistent in the environment. The use of photocatalytic oxidation to remove VOCs has the potential to be applied in indoor air quality improvement and industrial emission control. A fixed bed photocatalytic reactor was designed and built. UV black light lamps were installed in the reactor to provide a source of UV radiation. A non-film titania media as pellets were placed on the three fixed beds within the reactor. Toluene and acetone were used as indicators of VOCs during the experiment. With a flow rate of 12.75l/min, the oxidation efficiencies were obtained at four different concentrations of acetone laden gas streams ranging from 40ppm to 250ppm. It was found that the lower the acetone concentration of the untreated inlet gas, the higher the oxidation efficiency. The oxidation efficiency was in the range of 40–70% for various concentrations of untreated gases. Two concentrations of toluene laden gas stream were also tested using the same reactor. The oxidation efficiencies were found as 50% for 120ppm toluene gas and 45% for 300ppm toluene gas. It was found that the times required for toluene to reach oxidization equilibrium have been halved than for acetone gas stream. Other parameters such as flow rate and UV intensity were also altered to see their effects on the oxidation efficiency. A full spectrum scan was carried out using a Bio-rad Infrared spectrometer. It was found that the main components of the treated gas stream from the outlet of the reactor were CO2 and water along with small amount of untreated acetone. The suspected intermediates of aliphatic hydrocarbons and CO were found in very minimal amounts or undetectable. The research experiments supported that the TiO2 pellets can work effectively in a fixed bed photocatalytic reactor and achieve significant oxidation efficiencies for degradation of toluene and acetone as indicators of VOCs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The photocatalyst TiO2 with UV irradiation was used to degrade dyes in textile effluent in a flat-plate photoreactor. A test system was built with the reactor area of 1 x 0.3m2, UV light of six 36W-blacklight. TiO2 powder P25 with BET surface area 50±15m2/g, average primary particle size 21 nm, purity> 99.5% and content of 83.9% anatase and 16.1 % rutile was used as the photocatalyst. A number of dyes commonly present in dyeing wastewater were tested in this study. The different operating parameters, such as dosage of photocatalyst, the structure of the reactor, flow rates through the flat-plate reactor, UV radiation intensity and tilted angle of the reactor, were investigated. The results showed that the photocatalytic process could efficiently remove most of the colour contained in the dyeing wastewater. It was experimentally observed that first-order kinetics was adequate for characterising the process. The flow rate and the tilted angle had some influence on the film thickness of the fluid in the reactor and the empirical correlation between the film thickness of the fluid and these two parameters was developed. The photoreaction rate was mainly determined by the film thickness of the fluid on the reactor surface and the dosage of the photocatalyst. Optimum operating parameters of the system were found to be at the film thickness of about 1.4mm and a TiO2 dosage of 1 gIL. The higher the UV intensity, the faster the reaction rate was. The results of these experiments showed that this method has the great potential for colour removal from wastewater at commercial scale.

To overcome the common difficulty of separating the used TiO2 suspension after treatment precipitation followed with filtration was used in this study to determine the separation efficiencies. On the other hand, TiO2 in a small pillar shape was also studied for photocatalytic degradation of textile dye effluent. The pillar pellet was made in Oegussa Company, Germany ranging from 2.5 to 5.3mm long and with a diameter of 3.7mm. It was almost pure TiO2 (83.2% anatase and 16.8% rutile), with a S-content of <20 ppm and a CI content of the order of 0.1 wt. %. No further elements are present in contents above 0.05 wt.%. The TiO2 pillars were placed on the flat-plate reactor that was divided by the rectangular slots and irradiated under UV light when the treated solution went through the reactor. Four dyes and their mixtures were tested. The results showed that the photocatalytic process under this configuration efficiently remove the colour from textile dyeing effluent, and pillar shape TiO2 photocatalyst was not dissolved in water and very easy to be separated from solution, enabling it to be reused many times. The first-order kinetics was adequate for characterising the photocatalytic degradation process and the photocatalytic performance was comparable to TiO2 powder. It is believed that the TiO2 pellet would be a preferable form of photocatalyst in applications for textile effluent treatment process, and other wastewater treatment processes.