954 resultados para Degradation, Organic photovoltaics, Scanning probe microscopy


Relevância:

100.00% 100.00%

Publicador:

Resumo:

TiO2 nanoparticles (TiO2NPs) prepared by the sol–gel method have been incorporated to cement paste with the aim of creating a photocatalytic system capable of compensating, through degradation of hazardous molecules, the envi- ronmental impact associated to the production of the clinker. Doping was carried out at different mass ratios with TiO2NPs precursor solutions within a fresh ce- ment paste, which was then characterized using scanning electron microscopy (SEM). The photocatalytic performance was evaluated by the degradation of Methylene Blue (MB) using a 125W UV lamp as irradiating source. Main cement properties such as hydration degree and C-S-H content are affected by TiO2NPs doping level. Cement containing TiO2NPs exhibited an increasing photocatalytic activity for increasing doping, while the pure cement paste control could hardly degrade MB. The kinetics of the system where also studied and their second order behavior related to microstructural aspects of the system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Entre os inibidores de corrosão clássicos que já são utilizados na indústria do petróleo, foram estudadas a imidazolina oleica e a quaternária através de técnicas eletroquímicas, gravimétrica e analíticas, para avaliar a eficiência de inibição e como esses inibidores atuam em meio ácido. O meio agressivo foi uma solução de NaCl 3,5% em massa acidificada com ácido clorídrico até atingir um pH=2 com o objetivo de simular o ambiente de extração petrolífera. O substrato empregado foi o aço carbono 1020. As técnicas eletroquímicas utilizadas foram: monitoramento do potencial de circuito aberto, medidas de resistência de polarização linear, espectroscopia de impedância eletroquímica (EIE ) e curvas de polarização. Os valores das componentes real e imaginária de impedância indicam uma resistência maior aos processos de transferência de carga com o aumento da concentração dos inibidores e os Diagramas de Bode de ângulo de fase, revelaram a presença de uma camada de inibidor adsorvida sobre o metal com uma constante de tempo em altas frequências observada para a imidazolina oleica e quaternária. Para a imidazolina quaternária, verificou-se que só para tempos maiores de imersão é que o filme se adsorve de forma eficiente demonstrando uma cinética mais lenta de adsorção. Nos ensaios gravimétricos, os resultados de taxa de corrosão em m/ano foram decrescentes com o tempo após período de imersão de 30 dias, para ambas as imidazolinas. O uso das técnicas analíticas foi necessário a fim de se compreender melhor o comportamento das imidazolinas sobre o aço no meio estudado. Os resultados da análise de íons férricos em solução, por emissão atômica, foram obtidos durante várias amostragens durante o período do ensaio de perda de massa, e foi possível verificar um processo de inibição da corrosão até doze dias de imersão do metal, depois disto ocorre um disparo na quantidade de ferro liberado em solução, sugerindo que pode estar ocorrendo uma degradação do inibidor após 12 dias de imersão. Para esclarecer esse ponto, análises por espectroscopia Raman dos produtos de fundo formados durante os ensaios de perda de massa indicaramm que a degradação pode realmente estar ocorrendo. Foi confirmado, também por espectroscopia Raman sobre a superfície do aço após imersão prévia em solução contendo a imidazolina oleica, que há uma película adsorvida que protege o metal do meio agressivo. Técnica de microscopia eletrônica de varredura foi utilizada para caracterizar os corpos de prova na ausência e presença do inibidor, depois dos ensaios eletroquímicos e foi possível caracterizar, através dessa técnica a maior eficiência inibidora do filme de imidazolina quaternária. Dois tipos de nanoconatiners foram avaliados para o encapsulamento das duas imidazolinas estudadas: nanocontainers a base do argilomineral haloiista e sílica mesoporosa tipo SBA 15. Resultados de impedância eletroquímica mostraram a liberação dos inibidores de corrosão encapsulados com o tempo de imersão. Análise na região do infravermelho por sonda de fibra ótica foi utilizada para comprovar química e qualitativamente a liberação do inibidor a partir dos nanorreservatórios, no meio agressivo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Spin chains are among the simplest physical systems in which electron-electron interactions induce novel states of matter. Here we propose to combine atomic scale engineering and spectroscopic capabilities of state of the art scanning tunnel microscopy to probe the fractionalized edge states of individual atomic scale S=1 spin chains. These edge states arise from the topological order of the ground state in the Haldane phase. We also show that the Haldane gap and the spin-spin correlation length can be measured with the same technique.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neogene sediments from three areas of the Northern Indian Ocean (Indus Fan, Owen Ridge, Oman Margin, ODP Leg 117) were studied in order to determine the amount, type, and preservation of organic matter as functions of the environments encountered. The work consisted of geochemical analyses on whole sediment (Total Organic Content and Rock Eval pyrolysis) and of petrographic studies on isolated organic matter by optical and scanning electron microscopy. In Indus Fan sediments, organic matter is present in low amounts, mainly as lignaceous fragments. A contrasting situation exists in Oman Margin sediments which are generally rich in amorphous autochtonous organic matter. Owen Ridge, located between Indus fan and Oman Margin areas, shows two phases of organic sedimentation as a consequence of the uplift of the ridge. The older phase (Oligocene to early or middle Miocene) is strongly influenced by detrital supply from the Indus, while the younger phase (middle Miocene to Pleistocene) is characterized by relatively high amounts of autochtonous organic matter. From a general point of view it appears that high amounts of organic matter are mainly due to good preservation of marine amorphous organic matter, such as in Oman Margin sediments and in upper pelagic levels of Indus Fan and Owen Ridge deposits. Low total organic carbon contents are correlated with low proportions of amorphous material in the total organic matter due to oxidizing conditions. This leads to a relative enrichment in components derived from resistant materials (lignin, chitin, or other resistant biopolymers) such as lignaceous fragments (Indus Fan) and/or fragments from benthic organisms and alveolate microplankton (Oman Margin).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent research involving starch grains recovered from archaeological contexts has highlighted the need for a review of the mechanisms and consequences of starch degradation specifically relevant to archaeology. This paper presents a review of the plant physiological and soil biochemical literature pertinent to the archaeological investigation of starch grains found as residues on artefacts and in archaeological sediments. Preservative and destructive factors affecting starch survival, including enzymes, clays, metals and soil properties, as well as differential degradation of starches of varying sizes and amylose content, were considered. The synthesis and character of chloroplast-formed 'transitory' starch grains, and the differentiation of these from 'storage' starches formed in tubers and seeds were also addressed. Findings of the review include the higher susceptibility of small starch grains to biotic degradation, and that protective mechanisms are provided to starch by both soil aggregates and artefact surfaces. These findings suggest that current reasoning which equates higher numbers of starch grains on an artefact than in associated sediments with the use of the artefact for processing starchy plants needs to be reconsidered. It is argued that an increased understanding of starch decomposition processes is necessary to accurately reconstruct both archaeological activities involving starchy plants and environmental change investigated through starch analysis. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Scanning capacitance microscopy (SCM) measurement is a proposed tool for dopant profile extraction for semiconductor material. The influence of interface traps on SCM dC/dV data is still unclear. In this paper we report on the simulation work used to study the nature of SCM dC/dV data in the presence of interface traps. A technique to correctly simulate dC/dV of SCM measurement is then presented based on our justification. We also analyze how charge of interface traps surrounding SCM probe would affect SCM dC/dV due the small SCM probe dimension.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Functionalisation of polystyrene, PS, and ethylene-co-propylene-co-cyclopentadiene terpolymer, EPDM, with acrylic acid, AA, in a melt reactive processing procedure, in the presence of peroxide, trigonox 101, and coagents, Divinyl benzene, DVB (for PS), and trimethylolpropane triacrylate, TRIS (for EPDM), were successfully carried out. The level of grafting of the AA, as determined by infrared analysis, was significantly enhanced by the coagents. The grafting reaction of AA takes place simultaneously with homopolymerisation of the monomers, melt degradation and crosslinking reactions of the polymers. The extent of these competing reactions were inferred from measurements of melt flow index and insoluble gel content. Through a judicious use of both the peroxide and the coagent, particularly TRIS, unwanted side reactions were minimized. Five different processing methods were investigated for both functionalisation experiments; the direct addition of the pre-mixed polymer with peroxide and reactive modifiers was found to give optimum condition for grafting. The functionalised PS, F-PS, and EPDM, F-EPD, and maleinised polypropylene carrying a potential antioxidant, N-(4-anilinophenyl maleimide), F-PP were melt blended in binary mixtures of F-PS/F-EPD and F-PP/F-EPD in the presence (or absence) of organic diamines which act as an interlinking agent, e.g, Ethylene Diamine, EDA, and Hexamethylene Diamine, HEMDA. The presence of an interlinking agent, particularly HEMDA shows significant enhancement in the mechanical properties of the blend, suggesting that the copolymer formed has acted as compatibiliser to the otherwise incompatible polymer pairs. The functionalised and amidised blends, F and A-PSIEPDM (SPOI) and F and A-PPIEPDM (SPD2) were subsequently used as compatibiliser concentrates in the corresponding PSIEPDM and PPIEPDM blends containing various weight propotion of the homopolymers. The SPD1 caused general decreased in tensile strength, albeit increased in drop impact strength particularly in blend containing high PS content (80%). The SPD2 was particularly effective in enhancing impact strength in blends containing low weight ratio of PP (<70%). The SPD2 was also a good thermal antioxidant albeit less effective than commercial antioxidant. In all blends the evidence of compatibility was examined by scanning electron microscopy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Poly(β-hydroxybutyrate), (PHB), is a biologically produced, biodegradable thennoplastic with commercial potential. In this work the qualitative and quantitative investigations of the structure and degradation of a previously unstudied, novel, fibrous form of PHB, were completed. This gel-spun PHB fibrous matrix, PHB(FM), which has a similar appearance to cotton wool, possesses a relatively complex structure which combines a large volume with a low mass and has potential for use as a wound scaffolding device. As a result of the intrinsic problems presented by this novel structure, a new experimental procedure was developed to analyze the degradation of the PHB to its monomer hydroxybutyric acid, (HBA). This procedure was used in an accelerated degradation model which accurately monitored the degradation of the undegraded and degraded fractions of a fibrous matrix and the degradation of its PHB component. The in vitro degradation mechanism was also monitored using phase contrast and scanning electron microscopy, differential scanning calorimetry, fibre diameter distributions and Fourier infra-red photoacoustic spectroscopy. The accelerated degradation model was used to predict the degradation of the samples in the physiological model and this provided a clearer picture as to the samples potential biodegradation as medical implantation devices. The degradation of the matrices was characterized by an initial penetration of the degradative medium and weakening of the fibre integrity due to cleavage of the ester linkages, this then led to the physical collapse of the fibres which increased the surface area to volume ratio of the sample and facilitated its degradation. Degradation in the later stages was reduced due to the experimental kinetics, compaction and degradation resistant material, most probably the highly crystalline regions of the PHB. The in vitro degradation of the PHB(FM) was influenced by blending with various polysaccharides, copolymerizing with poly(~-hydroxyvalerate), (PHV), and changes to the manufacturing process. The degradation was also detennined to be faster than that of conventional melt processed PHB based samples. It was concluded that the material factors such as processing, sample size and shape affected the degradation of PHB based samples with the major factor of sample surface area to volume ratio being of paramount importance in determining the degradation of a sample.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The morphology, chemical composition, and mechanical properties in the surface region of α-irradiated polytetrafluoroethylene (PTFE) have been examined and compared to unirradiated specimens. Samples were irradiated with 5.5 MeV 4He2+ ions from a tandem accelerator to doses between 1 × 106 and 5 × 1010 Rad. Static time-of-flight secondary ion mass spectrometry (ToF-SIMS), using a 20 keV C60+ source, was employed to probe chemical changes as a function of a dose. Chemical images and high resolution spectra were collected and analyzed to reveal the effects of a particle radiation on the chemical structure. Residual gas analysis (RGA) was utilized to monitor the evolution of volatile species during vacuum irradiation of the samples. Scanning electron microscopy (SEM) was used to observe the morphological variation of samples with increasing a particle dose, and nanoindentation was engaged to determine the hardness and elastic modulus as a function of a dose. The data show that PTFE nominally retains its innate chemical structure and morphology at a doses <109 Rad. At α doses ≥109 Rad the polymer matrix experiences increased chemical degradation and morphological roughening which are accompanied by increased hardness and declining elasticity. At  α doses >1010 Rad the polymer matrix suffers severe chemical degradation and material loss. Chemical degradation is observed in ToF-SIMS by detection of ions that are indicative of fragmentation, unsaturation, and functionalization of molecules in the PTFE matrix. The mass spectra also expose the subtle trends of crosslinking within the α-irradiated polymer matrix. ToF-SIMS images support the assertion that chemical degradation is the result of a particle irradiation and show morphological roughening of the sample with increased a dose. High resolution SEM images more clearly illustrate the morphological roughening and the mass loss that accompanies high doses of a particles. RGA confirms the supposition that the outcome of chemical degradation in the PTFE matrix with continuing irradiation is evolution of volatile species resulting in morphological roughening and mass loss. Finally, we reveal and discuss relationships between chemical structure and mechanical properties such as hardness and elastic modulus.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The quest for renewable energy sources has led to growing attention in the research of organic photovoltaics (OPVs), as a promising alternative to fossil fuels, since these devices have low manufacturing costs and attractive end-user qualities, such as ease of installation and maintenance. Wide application of OPVs is majorly limited by the devices lifetime. With the development of new encapsulation materials, some degradation factors, such as water and oxygen ingress, can almost be excluded, whereas the thermal degradation of the devices remains a major issue. Two aspects have to be addressed to solve the problem of thermal instability: bulk effects in the photoactive layer and interfacial effects at the photoactive layer/charge-transporting layers. In this work, the interface between photoactive layer and electron-transporting zinc oxide (ZnO) in devices with inverted architecture was engineered by introducing polymeric interlayers, based on zinc-binding ligands, such as 3,4-dihydroxybenzene and 8-hydroxyquinoline. Also, a cross-linkable layer of poly(3,4-dimethoxystyrene) and its fullerene derivative were studied. At first, controlled reversible addition-fragmentation chain transfer (RAFT) polymerisation was employed to achieve well-defined polymers in a range of molar masses, all bearing a chain-end functionality for further modifications. Resulting polymers have been fully characterised, including their thermal and optical properties, and introduced as interlayers to study their effect on the initial device performance and thermal stability. Poly(3,4-dihydroxystyrene) and its fullerene derivative were found unsuitable for application in devices as they increased the work function of ZnO and created a barrier for electron extraction. On the other hand, their parental polymer, poly(3,4-dimethoxystyrene), and its fullerene derivative, upon cross-linking, resulted in enhanced efficiency and stability of devices, if compared to control. Polymers based on 8-hydroxyquinoline ligand had a negative effect on the initial stability of the devices, but increased the lifetime of the cells under accelerated thermal stress. Comprehensive studies of the key mechanisms, determining efficiency, such as charge generation and extraction, were performed by using time-resolved electrical and spectroscopic techniques, in order to understand in detail the effect of the interlayers on the device performance. Obtained results allow deeper insight into mechanisms of degradation that limit the lifetime of devices and prompt the design of better materials for the interface stabilisation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Biodegradable microspheres used as controlled release systems are important in pharmaceutics. Chitosan biopolymer represents an attractive biomaterial alternative because of its physicochemical and biological characteristics. Chitosan microspheres are expected to become promising carrier systems for drug and vaccine delivery, especially for non-invasive ways oral, mucosal and transdermal routes. Controlling the swelling rate and swelling capacity of the hydrogel and improving the fragile nature of microspheres under acidic conditions are the key challenges that need to be overcomed in order to enable the exploration of the full pharmaceutical potential use of these microparticles. Many studies have focused on the modification of chitosan microsphere structures with cross-linkers, various polymers blends and new organic-inorganic hybrid systems in order to obtain improved properties. In this work, microspheres made of chitosan and nanosized hydrophobic silica (Aerosil R972) were produced by a method consisting of two steps. First, a preparation of a macroscopically homogeneous chitosan-hydrophobic silica dispersion was prepared followed by spray drying. FTIR spectroscopy, X-ray powder diffraction, differential scanning calorimetry, thermal gravimetric analysis, scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (TEM) were used to characterize the microspheres. Also, the were conducted acid stability, moisture sorption capacity, release properties and biological assays. The chitosan-hydrophobic silica composite microspheres showed improved thermal degradation, lower water affinity, better acid stability and ability to retard rifampicin and propranolol hydrochloride (drug models) release under simulated physiological conditions. In vitro biocompatibility studies indicated low cytotoxicity and low capacity to activate cell production of the pro-inflammatory mediator nitric oxide. The results show here encourage further studies on the use of the new chitosan-hydrophobic silica composite microspheres as drug carrier systems via oral or nasal routes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Water treatment using photocatalysis has gained extensive attention in recent years. Photocatalysis is promising technology from green chemistry point of view. The most widely studied and used photocatalyst for decomposition of pollutants in water under ultraviolet irradiation is TiO2 because it is not toxic, relatively cheap and highly active in various reactions. Within this thesis unmodified and modified TiO2 materials (powders and thin films) were prepared. Physico-chemical properties of photocatalytic materials were characterized with UV-visible spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectrometry (XPS), inductively coupled plasma optical emission spectroscopy (ICP-OES), ellipsometry, time-of-flight secondary ion mass spectrometry (ToF-SIMS), Raman spectroscopy, goniometry, diffuse reflectance measurements, thermogravimetric analysis (TGA) and nitrogen adsorption/desorption. Photocatalytic activity of prepared samples in aqueous environment was tested using model compounds such as phenol, formic acid and metazachlor. Also purification of real pulp and paper wastewater effluent was studied. Concentration of chosen pollutants was measured with high pressure liquid chromatography (HPLC). Mineralization and oxidation of organic contaminants were monitored with total organic carbon (TOC) and chemical oxygen demand (COD) analysis. Titanium dioxide powders prepared via sol-gel method and doped with dysprosium and praseodymium were photocatalytically active for decomposition of metazachlor. The highest degradation rate of metazachlor was observed when Pr-TiO2 treated at 450ºC (8h) was used. The photocatalytic LED-based treatment of wastewater effluent from plywood mill using commercially available TiO2 was demonstrated to be promising post-treatment method (72% of COD and 60% of TOC was decreased after 60 min of irradiation). The TiO2 coatings prepared by atomic layer deposition technique on aluminium foam were photocatalytically active for degradation of formic and phenol, however suppression of activity was observed. Photocatalytic activity of TiO2/SiO2 films doped with gold bipyramid-like nanoparticles was about two times higher than reference, which was not the case when gold nanospheres were used.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polymer aluminum electrolytic capacitors were introduced to provide an alternative to liquid electrolytic capacitors. Polymer electrolytic capacitor electric parameters of capacitance and ESR are less temperature dependent than those of liquid aluminum electrolytic capacitors. Furthermore, the electrical conductivity of the polymer used in these capacitors (poly-3,4ethylenedioxithiophene) is orders of magnitude higher than the electrolytes used in liquid aluminum electrolytic capacitors, resulting in capacitors with much lower equivalent series resistance which are suitable for use in high ripple-current applications. The presence of the moisture-sensitive polymer PEDOT introduces concerns on the reliability of polymer aluminum capacitors in high humidity conditions. Highly accelerated stress testing (or HAST) (110ºC, 85% relative humidity) of polymer aluminum capacitors in which the parts were subjected to unbiased HAST conditions for 700 hours was done to understand the design factors that contribute to the susceptibility to degradation of a polymer aluminum electrolytic capacitor exposed to HAST conditions. A large scale study involving capacitors of different electrical ratings (2.5V – 16V, 100µF – 470 µF), mounting types (surface-mount and through-hole) and manufacturers (6 different manufacturers) was done to determine a relationship between package geometry and reliability in high temperature-humidity conditions. A Geometry-Based HAST test in which the part selection limited variations between capacitor samples to geometric differences only was done to analyze the effect of package geometry on humidity-driven degradation more closely. Raman spectroscopy, x-ray imaging, environmental scanning electron microscopy, and destructive analysis of the capacitors after HAST exposure was done to determine the failure mechanisms of polymer aluminum capacitors under high temperature-humidity conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação (Mestrado em Tecnologia Nuclear)