764 resultados para DEUTERIUM
Resumo:
Collisions between H-3(+) and HD in molecular clouds lead to the fractionation of deuterium in H2D+ at temperatures below 20 K. In this article, we describe the chemistry of H2D+ and discuss how variations in temperature and elemental abundances affect the level of fractionation in H2D+ and other species. We describe how accretion of gas-phase molecules on to cold dust grains enhances the deuteration in several molecules including doubly deuterated molecules. Mie show that the ion-neutral drift velocities attained in slow Alfven waves can destroy H2D+ in non-thermal reactions. As a result, the degree of fractionation can be reduced and we discuss observational consequences of such a model for the dark dust cloud TMC-1.
Resumo:
An electrostatic trapping scheme for use in the study of light-induced dissociation of molecular ions is outlined. We present a detailed description of the electrostatic reflection storage device and specifically demonstrate its use in the preparation of a vibrationally cold ensemble of deuterium hydride (HD+) ions. By interacting an intense femtosecond laser with this target and detecting neutral fragmentation products, we are able to elucidate previously inaccessible dissociation dynamics for fundamental diatomics in intense laser fields. In this context, we present new results of intense field dissociation of HD+ which are interpreted in terms of recent theoretical calculations.
Resumo:
A novel scheme for enhancing electron localization in intense-field dissociation is outlined. Through manipulation of a bound vibrational wavepacket in the exemplar deuterium molecular ion, simulations demonstrate that the application of multiple phase-locked, few-cycle IR pulses can provide a powerful scheme for directing the molecular dissociation pathway. By tuning the time delay and carrier–envelope–phase for a sequence of pulse interactions, the probability of the electron being localized to a chosen nucleus can be enhanced to above 80%.
Resumo:
Recent advances in the study of quantum vibrations and rotations in the fundamental hydrogen molecules are reported. Using the deuterium molecules (D-2(+) and D-2) as exemplars, the application of ultrafast femtosecond pump-probe experiments to study the creation and time-resolved imaging of coherent nuclear wavepackets is discussed. The ability to study the motion of these fundamental molecules in the time-domain is a notable milestone, made possible through the advent of ultrashort intense laser pulses with durations on sub-vibrational (and sub-rotational) timescales. Quantum wavepacket revivals are characterised for both vibrational and rotational degrees of freedom and quantum models are used to provide a detailed discussion of the underlying ultrafast physical dynamics for the specialist and non-specialist alike. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The expansion of electromagnetic postsolitons emerging from the interaction of a 30 ps, 3 x 10(18) W cm(-2) laser pulse with an underdense deuterium plasma has been observed up to 100 ps after the pulse propagation, when large numbers of postsolitons were seen to remain in the plasma. The temporal evolution of the postsolitons has been accurately characterized with a high spatial and temporal resolution. The observed expansion is compared to analytical models and three-dimensional particle-in-cell results, revealing a polarization dependence of the postsoliton dynamics.
Resumo:
All extra-solar planet masses that have been derived spectroscopically are lower limits since the inclination of the orbit to our line-of-sight is unknown except for transiting systems. In theory, however, it is possible to determine the inclination angle, i, between the rotation axis of a star and an observer's line-of-sight from measurements of the projected equatorial velocity (v sin i), the stellar rotation period (P(rot)) and the stellar radius (R(*)). For stars which host planetary systems this allows the removal of the sin i dependency of extra-solar planet masses derived from spectroscopic observations under the assumption that the planetary orbits lie perpendicular to the stellar rotation axis.
We have carried out an extensive literature search and present a catalogue of v sin i, P(rot) and R(*) estimates for stars hosting extra-solar planets. In addition, we have used Hipparcos parallaxes and the Barnes-Evans relationship to further supplement the R(*) estimates obtained from the literature. Using this catalogue, we have obtained sin i estimates using a Markov-chain Monte Carlo analysis. This technique allows proper 1 Sigma two-tailed confidence limits to be placed on the derived sin i's along with the transit probability for each planet to be determined.
While we find that a small proportion of systems yield sin i's significantly greater than 1, most likely due to poor P(rot) estimations, the large majority are acceptable. We are further encouraged by the cases where we have data on transiting systems, as the technique indicates inclinations of similar to 90 degrees and high transit probabilities. In total, we are able to estimate the true masses of 133 extra-solar planets. Of these 133 extra-solar planets, only six have revised masses that place them above the 13M(J) deuterium burning limit; four of those six extra-solar planet candidates were already suspected to lie above the deuterium burning limit before correcting their masses for the sin i dependency. Our work reveals a population of high-mass extra-solar planets with low eccentricities, and we speculate that these extra-solar planets may represent the signature of different planetary formation mechanisms at work. Finally, we discuss future observations that should improve the robustness of this technique.
Resumo:
The experimental study of the behavior of deuterium plasma with densities between 2 X 1018 and 2 x 10(20) cm(-3), subjected to a 6 TW, 30 ps, 3 X 10(18) W cm(-2) laser pulse, is presented Conclusive experimental proof that a single straight channel is generated when the laser pulse interacts with the lowest densities is provided This channel shows no small-scale longitudinal density modulations, extends up to 2 mm in length and persists for up to 150 ps after the peak of the interaction Bifurcation of the channel after 1 mm propagation distance is observed for the first time For higher density interactions, above the relativistic self-focusing threshold, bubblelike structures are observed to form at late times These observations have implications for both laser wakefield accelerators and fast ignition inertial fusion studies (C) 2010 American Institute of Physics [doi 10 1063/1 3505305]
Resumo:
New air-stable ruthenium(II) complexes that contain the aryldiamine ligand [C6H3(CH2-NMe2)(2)-2,6](-) (NCN) are described. These complexes are [RuCl{eta(2)-C,N-C6H3(CH2NMe2)(2)-2,6}(eta(6)-C10H14)] (2; C10H14 = p-cymene = C6H4Me-Pr-i-4), [Ru{eta(2)-C,N-C6H3(CH2NMe2)(2)-2,6}(eta(5)-C5H5)(PPh3)] (5), and their isomeric forms [RuCl{eta(2)-C,N-C6H3(CH2NMe2)(2)-2,4}(eta(6)-C10H14)] (3) and [Ru{eta(2)-C,N-C6H3(CH2NMe2)(2)-2,4}(eta(5)-C5H5)(PPh3)] (6), respectively. Complex 2 has been prepared from the reaction of [Li(NCN)](2) with [RuCl2(eta(6)-C10H14)](2), whereas complex 5 has been prepared by the treatment of [RuCl{eta(3)-N,C,N-C6H3(CH2NMe2)(2)-2,6}(PPh3)] (4) with [Na(C5H5)](n). Both 2 and 5 are formally 18-electron ruthenium(II) complexes in which the monoanionic potentially tridentate coordinating ligand NCN is eta(2)-C,N-bonded, In solution (halocarbon solvent at room temperature or in aromatic solvents at elevated temperature), the intramolecular rearrangements of 2 and 5 afford complexes 3 and 6, respectively. This is a result of a shift of the metal-C-aryl bond from position-1 to position-3 on the aromatic ring of the NCN ligand. The mechanism of the isomerization is proposed to involve a sequence of intramolecular oxidative addition and reductive elimination reactions of both aromatic and aliphatic C-H bonds. This is based on results from deuterium labeling, spectroscopic studies, and some kinetic experiments. The mechanism is proposed to contain fully reversible steps in the case of 5, but a nonreversible step involving oxidative addition of a methyl NCH2-H bond in the case of 2. The solid-state structures of complexes 2, 3, 5, and 6 have been determined by single-crystal X-ray diffraction. A new dinuclear 1,4-phenylene-bridged bisruthenium(II) complex, [1,4-{RuCl(eta(6)-C10H14)}(2){C-6(CH2NMe2)(4)-2,3,5,6-C,N,C',N'}] (9) has also been prepared from the dianionic ligand [C-6(CH2NMe2)(4)-2,3,5,6](2-) (C2N4). The C2N4 ligand is in an eta(2)-C,N-eta(2)-C',N'-bis(bidentate) bonding mode. Compound 9 does not isomerize in solution (halocarbon solvent), presumably because of the absence of an accessible C-aryl-H bond. Complex 9 could not be isolated in an analytically pure form, probably because of its high sensitivity to air and very low solubility, which precludes recrystallization.
Resumo:
The first definite discoveries of extragalactic deuterium are reported. DCO+ has been detected in three and DCN has been measured in one star-forming region of the Large Magellanic Cloud (LMC). While the HCO+/DCO+ abundance ratios are found to be 19 +/- 3, 24 +/- 4, and 67 +/- 18 for N113, N44BC and N159HW, respectively, a HCN/DCN abundance ratio of 23 +/- 5 is obtained for N113. These results are consistent with a gas temperature of about 20 K and a D/H ratio of about 1.5 x 10(-5), consistent with that observed in the Galaxy. If the cloud temperature is closer to 30 K, then a D/H ratio is required to be up to an order of magnitude larger. Because this ratio provides a lower limit to the primordial D/H ratio, it indicates that the baryon mass density alone is unable to close the universe.
Resumo:
We have observed DC3N and HC3N in a number of cold dust clouds in order to derive the degree of deuterium fractionation. We find that the ratio of DC3N to HC3N is large, at about 0.05 or more, and discuss the implications of this result for the synthesis of cyanoacetylene. The observations are most readily interpreted if the deuteration of HC3N is linked to that of cyclic C3H2, which is also observed to exhibit a large degree of deuterium fractionation. HC3N deuteration levels comparable with those we observed are found to he just compatible with the mechanism suggested by Howe & Millar, but with adjusted rate coefficients. Freeze-out on to grain surfaces is also considered, but produces widespread deuterium enhancement in many species. contrary to observed levels.
Resumo:
Electron energy probability functions measured with a passively compensated Langmuir probe in asymmetric capacitively coupled hydrogen and deuterium plasmas exhibit structure. The otherwise relatively continuous distribution appears to have an abrupt peak in electron density near 5 eV. This structure occurs at a higher energy in deuterium than hydrogen and there is a correlation between floating potential and the voltage at which the structure is observed in the second derivative of the I(V) characteristic. While the cause of the structure has yet to be clarified, spectroscopic observations and computer-based hydrogen models indicate that the high energy tail of the distribution is strongly modulated during the radio frequency cycle. The effect of this modulation on plasma properties and probe measurements has yet to be explored. (C) 1999 American Institute of Physics. [S0003-6951(99)00819-0].
Resumo:
We present the fifth release of the UMIST Database for Astrochemistry (UDfA). The new reaction network contains 6173 gas-phase
reactions, involving 467 species, 47 of which are new to this release. We have updated rate coefficients across all reaction types.
We have included 1171 new anion reactions and updated and reviewed all photorates. In addition to the usual reaction network, we
also now include, for download, state-specific deuterated rate coefficients, deuterium exchange reactions and a list of surface binding
energies for many neutral species. Where possible, we have referenced the original source of all new and existing data. We have tested
the main reaction network using a dark cloud model and a carbon-rich circumstellar envelope model. We present and briefly discuss
the results of these models.
Resumo:
Fumonisins are mycotoxins produced by Fusarium spp. and commonly contaminate maize and maize products worldwide. Fumonisins are rodent carcinogens and have been associated with human esophageal cancer. However, the lack of a valid exposure biomarker has hindered both the assessment of human exposure and the evaluation of disease risk. A sensitive liquid chromatography-mass spectrometry method to measure urinary fumonisin B1 (FB1) following extraction on Oasis MAX cartridges was established and applied to urine samples from women in a cohort recruited in Morelos County, Mexico. Urinary FB1 was compared with dietary information on tortilla consumption. FB1 recovery in spiked samples averaged 94% as judged by deuterium-labeled FB1 internal standard. Urinary FB1 was determined in 75 samples from women selected based on low, medium, or high consumption of maize-based tortillas. The geometric mean (95% confidence interval) of urinary FB1 was 35.0 (18.8-65.2), 63.1 (36.8-108.2), and 147.4 (87.6-248.0) pg/mL and the frequency of samples above the detection limit (set at 20 pg FB1/mL urine) was 45%, 80%, and 96% for the low, medium, and high groups, respectively. Women with high intake had a 3-fold higher average FB1 levels compared with the "low intake" group (F = 7.3; P = 0.0015). Urinary FB1 was correlated with maize intake (P-trend = 0.001); the correlation remained significant after adjusting for age, education, and place of residence. This study suggests that measurement of urinary FB1 is sufficiently sensitive for fumonisin exposure assessment in human populations and could be a valuable tool in investigating the associated health effects of exposure.
Resumo:
Electron deficient active sites in Pd catalysts, either as films or on supports, are deliberately generated by calcining in O-2 at high temperature followed by the mildest possible reduction (with the reaction mixture itself), and are manifested by a marked shift from multiple to simple exchange in the cyclopentane/D-2 probe reaction.
Resumo:
CO and C3H6 oxidation have been carried out in the absence and presence of water over a Pd/Al2O3catalyst. It is clear that water promotes CO and, as a consequence, C3H6oxidation takes place at muchlower temperatures compared with the dry feed. The significant increase in the catalyst’s activity withrespect to CO oxidation is not simply associated with changes in surface concentration as a result ofcompetitive adsorption effects. Utilising18O2as the reactant allows the pathways whereby the oxidationdue to gaseous dioxygen and where the water activates the CO and C3H6to be distinguished. In thepresence of water, the predominant pathway is via water activation with C16O2and C16O18O being themajor species formed and oxidation with dioxygen plays a secondary role. The importance of wateractivation is further supported by the significant decrease in its effect when using D2O versus H2O.