961 resultados para Cytochrome P450 2A6


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The difficulty in mimicking nervous system complexity and cell-cell interactions as well as the lack of kinetics information has limited the use of in vitro neurotoxicity data. Here, we assessed the biokinetic profile as well as the neurotoxicity of Amiodarone after acute and repeated exposure in two advanced rodent brain cell culture models, consisting of both neurons and glial cells organized in 2 or 3 dimensions to mimic the brain histiotypic structure and function. A strategy was applied to evidence the abiotic processes possibly affecting Amiodarone in vitro bioavailability, showing its ability to adsorb to the plastic devices. At clinically relevant Amiodarone concentrations, known to induce neurotoxicity in some patients during therapeutic treatment, a complete uptake was observed in both models in 24h, after single exposure. After repeated treatments, bioaccumulation was observed, especially in the 3D cell model, together with a greater alteration of neurotoxicity markers. After 14days, Amiodarone major oxidative metabolite (mono-N-desethylamiodarone) was detected at limited levels, indicating the presence of active drug metabolism enzymes (i.e. cytochrome P450) in both models. The assessment of biokinetics provides useful information on the relevance of in vitro toxicity data and should be considered in the design of an Integrated Testing Strategy aimed to identify specific neurotoxic alerts, and to improve the neurotoxicity assay predictivity for human acute and repeated exposure.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Methylglyoxal is a very reactive α-oxoaldehyde putatively produced by glycolysis, cytochrome P450-catalyzed acetone oxidation and aminoacetone oxidation. Methylglyoxal has been pointed as a substrate for the glyoxalase system ultimately energy-yielding pyruvate, but methylglyoxal is also a toxicant involved in protein aggregation and DNA modification. Controversial hypothesis on methylglyoxal as an anticancer agent, an energy-yielding glycolysis intermediates, and as a regulator of cell division have also been proposed. Methylglyoxal research focuses now on unveiling its biological properties and on the discovery of drugs capable to inhibit its toxic effects, principally in diabetes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The proportion of elderly people over 65 years of age in Finland is expected to grow to over 25% by the 2025. It has been estimated that elderly people today consume nearly 40% of all drugs. Age brings about number of physiological changes that may affect the disposition, metabolism and excretion of drugs. The function of heart, lungs, liver and kidneys decreases even in healthy people, as they get older. The proportion of total body water decreases and the relative fat percentage increases. Also several other factors such as concurrent diseases, concomitant medication and nutritional factors have an effect on drug therapy in elderly. Age increases the risk of adverse drug reactions, which most often are dose-dependent. Despite all this there are not enough studies involving the elderly people and the elderly are most often excluded from clinical trials. Oxycodone is a strong opioid analgesic, which is used to treat moderate or severe pain. Paracetamol is a widely used nonopioid analgesic, which has become popular in the treatment of pain in many patient groups. In this series of studies the pharmacokinetics of oral and intravenous oxicodone as well as intravenous paracetamol in the elderly and young adult patients were investigated. Also a study investigating the interaction of oral antibiotic clarityhromycin, a known cytochrome P450 (CYP) 3A4 inhibitor, with oxycodone pharmacokinetics and pharmacodynamics in elderly and young healthy volunteers was carried out. The pharmacokinetics of oxycodone showed a clear age depency. Patients over 70 years had 50-80% higher mean exposure to oral oxycodone and a twofold greater plasma concentration than young adults 12 h after ingestion of the drug. Elderly patients had 40-80% greater exposure to intravenous oxycodone and patients over 80 years had over twofold greater plasma concentrations 8 h post dose than the young adults. The elderly patients had also greater exposure to intra venous paracetamol compared to young adults. Clarithromycin increased the exposure to oral oxycodone in both young and elderly volunteers. The elderly had marked interindividual variation in the pharmacokinetics and pharmacodynamics when clarithromycin was given concomitantly with oxycodone. Because the pharmacokinetics of oxycodone and intravenous paracetamol depend on the age of the subject, it is important to titrate the analgesic dose individually in the elderly.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The most conspicuous effect of bradykinin following its administration into the systemic circulation is a transient hypotension due to vasodilation. In the present study most of the available evidence regarding the mechanisms involved in bradykinin-induced arterial vasodilation is reviewed. It has become firmly established that in most species vasodilation in response to bradykinin is mediated by the release of endothelial relaxing factors following the activation of B2-receptors. Although in some cases the action of bradykinin is entirely mediated by the endothelial release of nitric oxide (NO) and/or prostacyclin (PGI2), a large amount of evidence has been accumulated during the last 10 years indicating that a non-NO/PGI2 factor accounts for bradykinin-induced vasodilation in a wide variety of perfused vascular beds and isolated small arteries from several species including humans. Since the effect of the non-NO/PGI2 endothelium-derived relaxing factor is practically abolished by disrupting the K+ electrochemical gradient together with the fact that bradykinin causes endothelium-dependent hyperpolarization of vascular smooth muscle cells, the action of such factor has been attributed to the opening of K+ channels in these cells. The pharmacological characteristics of these channels are not uniform among the different blood vessels in which they have been examined. Although there is some evidence indicating a role for KCa or KV channels, our findings in the mesenteric bed together with other reports indicate that the K+ channels involved do not correspond exactly to any of those already described. In addition, the chemical identity of such hyperpolarizing factor is still a matter of controversy. The postulated main contenders are epoxyeicosatrienoic acids or endocannabinoid agonists for the CB1-receptors. Based on the available reports and on data from our laboratory in the rat mesenteric bed, we conclude that the NO/PGI2-independent endothelium-dependent vasodilation induced by BK is unlikely to involve a cytochrome P450 arachidonic acid metabolite or an endocannabinoid agonist.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Xenobiotic metabolism is influenced by a variety of physiological and environmental factors including pregnancy and nutritional status of the individual. Pregnancy has generally been reported to cause a depression of hepatic monooxygenase activities. Low-protein diets and protein-energy malnutrition have also been associated with a reduced activity of monooxygenases in nonpregnant animals. We investigated the combined effects of pregnancy and protein-energy malnutrition on liver monooxygenase O-dealkylation activity. On pregnancy day 0 rats were assigned at random to a group fed ad libitum (well-nourished, WN) or to a malnourished group (MN) which received half of the WN food intake (12 g/day). WN and MN rats were killed on days 0 (nonpregnant), 11 or 20 of pregnancy and ethoxy- (EROD), methoxy- (MROD) and penthoxy- (PROD) resorufin O-dealkylation activities were measured in liver microsomes. Only minor changes in enzyme activities were observed on pregnancy day 11, but a clear-cut reduction of monooxygenase activities (pmol resorufin min-1 mg protein-1) was noted near term (day 0 vs 20, means ± SD, Student t-test, P<0.05) in WN (EROD: 78.9 ± 15.1 vs 54.6 ± 10.2; MROD: 67.8 ± 10.0 vs 40.9 ± 7.2; PROD: 6.6 ± 0.9 vs 4.3 ± 0.8) and in MN (EROD: 89.2 ± 23.9 vs 46.9 ± 15.0; MROD: 66.8 ± 13.8 vs 27.9 ± 4.4; PROD: 6.3 ± 1.0 vs 4.1 ± 0.6) dams. On pregnancy day 20 MROD was lower in MN than in WN dams. Malnutrition did not increase the pregnancy-induced reduction of EROD and PROD activities. Thus, the present results suggest that the activities of liver monooxygenases are reduced in near-term pregnancy and that protein-energy malnutrition does not alter EROD or PROD in pregnant rats.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Annatto or urucum is an orange-yellow dye obtained from Bixa orellana seeds. It has been used as a natural dye in a variety of food products, drugs and cosmetics, and also in Brazilian cuisine as a condiment ('colorau'). Bixin, a carotenoid devoid of provitamin A activity, is the main pigment found in annatto. Some carotenoids (canthaxanthin, astaxanthin and ß-Apo-8'-carotenal) are known to be potent inducers of CYP1A1, a property not shared by others (ß-carotene, lycopene and lutein). Little is known, however, about the CYP1A1-inducing properties of bixin and annatto. The present study was performed to determine the effects of an annatto extract (28% bixin) and bixin (95% pure) on rat liver monooxygenases. Adult female Wistar rats were treated by gavage with daily doses of annatto (250 mg/kg body weight, which contains approximately 70 mg bixin/kg body weight), bixin (250 mg/kg body weight) or the vehicle only (corn oil, 3.75 g/kg body weight) for 5 consecutive days, or were not treated (untreated control). The activities of aniline-4-hydroxylase (A4H), ethoxycoumarin-O-deethylase (ECOD), ethoxy- (EROD), methoxy- (MROD), pentoxy- (PROD) and benzyloxy- (BROD) resorufin-O-dealkylases were measured in liver microsomes. Annatto (250 mg/kg containing 70 mg bixin/kg) induced EROD (3.8x), MROD (4.2x), BROD (3.3x) and PROD (2.4x). Bixin (250 mg/kg) was a weaker inducer of EROD (2.7x), MROD (2.3x) and BROD (1.9x) and did not alter PROD, A4H or ECOD activities. These results suggest that constituents of the extract other than bixin play an important role in the induction of CYP1A and CYP2B observed with annatto food colorings.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cytochrome P450 (CYP) 2A enzymes are involved in the metabolism of numerous drugs and hormones and activate different carcinogens. Human CYP2A6, mouse CYP2A5 and rat CYP2A3 are orthologous enzymes that present high similarity in their amino acid sequence and share substrate specificities. However, different from the human and mouse enzyme, CYP2A3 is not expressed in the rat liver. There are limited data about expression of CYP2A3 in extrahepatic tissues and its regulation by typical CYP inducers. Therefore, the objective of the present study was to analyze CYP2A3 mRNA expression in different rat tissues by RT-PCR, and to study the influence of 3-methylcholanthrene, pyrazole and ß-ionone treatment on its expression. Male Wistar rats were divided into four groups of 5 rats each, and were treated ip for 4 days with 3-methylcholanthrene (25 mg/kg body weight), pyrazole (150 mg/kg body weight), ß-ionone (1 g/kg body weight), or vehicle. Total RNA was extracted from tissues and CYP2A3 mRNA levels were analyzed by semiquantitative RT-PCR. CYP2A3 mRNA was constitutively expressed in the esophagus, lung and nasal epithelium, but not along the intestine, liver, or kidney. CYP2A3 mRNA levels were increased in the esophagus by treatment with 3-methylcholanthrene and pyrazole (17- and 7-fold, respectively), in lung by pyrazole and ß-ionone (3- and 4-fold, respectively, although not statistically significant), in the distal part of the intestine and kidney by 3-methylcholanthrene and pyrazole, and in the proximal part of the intestine by pyrazole. CYP2A3 mRNA was not induced in nasal epithelium, liver or in the middle part of the intestine. These data show that, in the rat, CYP2A3 is constitutively expressed in several extrahepatic tissues and its regulation occurs through a complex mechanism that is essentially tissue specific.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The present study was designed to determine relaxation in response to 17ß-estradiol by isolated perfused hearts from intact normotensive male and female rats as well as the contribution of endothelium and its relaxing factors to this action. Baseline coronary perfusion pressure was determined and the vasoactive effects of 17ß-estradiol (10 µM) were assessed by in bolus administration before and after endothelium denudation by infusion of 0.25 µM sodium deoxycholate or perfusion with 100 µM L-NAME, 2.8 µM indomethacin, 0.75 µM clotrimazole, 100 µM L-NAME plus 2.8 µM indomethacin, and 100 µM L-NAME plus 0.75 µM clotrimazole. Baseline coronary perfusion pressure differed significantly between males (84 ± 2 mmHg, N = 61) and females (102 ± 2 mmHg, N = 61). Bolus injection of 10 µM 17ß-estradiol elicited a transient relaxing response in all groups, which was greater in coronary beds from females. For both sexes, the relaxing response to 17ß-estradiol was at least in part endothelium-dependent. In the presence of the nitric oxide synthase inhibitor L-NAME, the relaxing response to 17ß-estradiol was reduced only in females. Nevertheless, in the presence of indomethacin, a cyclooxygenase inhibitor, or clotrimazole, a cytochrome P450 inhibitor, the 17ß-estradiol response was significantly reduced in both groups. In addition, combined treatment with L-NAME plus indomethacin or L-NAME plus clotrimazole also reduced the 17ß-estradiol response in both groups. These results indicate the importance of prostacyclin and endothelium-derived hyperpolarizing factor in the relaxing response to 17ß-estradiol. 17ß-estradiol-induced relaxation may play an important role in the regulation of coronary tone and this may be one of the reasons why estrogen replacement therapy reduces the risk of coronary heart disease in postmenopausal women.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

It has been suggested that the measurement of metronidazole clearance is a sensitive method for evaluating liver function. The aim of this study was to evaluate the usefulness of plasma hydroxy-metronidazole/metronidazole ratios as indicators of dynamic liver function to detect changes resulting from the various forms of chronic hepatitis C virus (HCV) infection. A total of 139 individuals were studied: 14 healthy volunteers, 22 healthy, asymptomatic, consecutive anti-HCV-positive HCV-RNA negative subjects, 81 patients with chronic hepatitis C (49 with moderate/severe chronic hepatitis and 34 with mild hepatitis), and 20 patients with cirrhosis of the liver. HCV status was determined by the polymerase chain reaction. Plasma concentrations of metronidazole and its hydroxy-metabolite were measured by reverse-phase high-performance liquid chromatography with ultraviolet detection in a blood sample collected 10 min after the end of a metronidazole infusion. Anti-HCV-positive HCV-RNA-negative individuals demonstrated a significantly reduced capacity to metabolize intravenously infused metronidazole compared to healthy individuals (0.0478 ± 0.0044 vs 0.0742 ± 0.0232). Liver cirrhosis patients also had a reduced plasma hydroxy-metronidazole/metronidazole ratio when compared to the other groups of anti-HCV-positive individuals (0.0300 ± 0.0032 vs 0.0438 ± 0.0027 (moderate/severe chronic hepatitis) vs 0.0455 ± 0.0026 (mild chronic hepatitis) and vs 0.0478 ± 0.0044 (anti-HCV-positive, HCV-RNA-negative individuals)). These results suggest an impairment of the metronidazole metabolizing system induced by HCV infection that lasts after viral clearance. In those patients with chronic hepatitis C, this impairment is paralleled by progression of the disease to liver cirrhosis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cytochrome P450 (CYP) is a superfamily of enzymes involved in the metabolism of endogenous compounds and xenobiotics. CYP2A6 catalyzes the oxidation of nicotine and the activation of carcinogens such as aflatoxin B1 and nitrosamines. CYP2E1 metabolizes ethanol and other low-molecular weight compounds and can also activate nitrosamines. The CYP2A6 and CYP2E1 genes are polymorphic, altering their catalytic activities and susceptibility to cancer and other diseases. A number of polymorphisms described are ethnic-dependent. In the present study, we determined the genotype and allele frequencies of the main CYP2A6 and CYP2E1 polymorphisms in a group of 289 volunteers recruited at the Central Laboratory of Hospital Universitário Pedro Ernesto. They had been residing in the city of Rio de Janeiro for at least 6 months and were divided into two groups according to skin color (white and non-white). The alleles were determined by allele specific PCR (CYP2A6) or by PCR-RFLP (CYP2E1). The frequencies of the CYP2A6*1B and CYP2A6*2 alleles were 0.29 and 0.02 for white individuals and 0.24 and 0.01 for non-white individuals, respectively. The CYP2A6*5 allele was not found in the population studied. Regarding the CYP2E1*5B allele, we found a frequency of 0.07 in white individuals, which was statistically different (P < 0.05) from that present in non-white individuals (0.03). CYP2E1*6 allele frequency was the same (0.08) in both groups. The frequencies of CYP2A6*1B, CYP2A6*2 and CYP2E1*6 alleles in Brazilians are similar to those found in Caucasians and African-Americans, but the frequency of the CYP2E1*5B allele is higher in Brazilians.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We evaluated changes in levels by comparing serum proteins in senescence-accelerated mouse-prone 8 (SAMP8) mice at 2, 6, 12, and 15 months of age (SAMP8-2 m, -6 m, -12 m, -15 m) to age-matched SAM-resistant 1 (SAMR1) mice. Mice were sacrificed, and blood was analyzed by 2-dimensional electrophoresis combined with mass spectrometry. Five protein spots were present in all SAMP8 serum samples, but only appeared in SAMR1 samples at 15 months of age except for spot 3, which also showed a slight expression in SAMR1-12 m sera. Two proteins decreased in the sera from SAMP8-2 m, -6 m, and -12 m mice, and divided into 2 spots each in SAMP8-15 m sera. Thus, the total number of altered spots in SAMP8 sera was 7; of these, 4 were identified as Ig kappa chain V region (M-T413), chain A of an activity suppressing Fab fragment to cytochrome P450 aromatase (32C2_A), alpha-fetoprotein, and apolipoprotein A-II. M-T413 is a monoclonal CD4 antibody, which inhibits T cell proliferation. We found that M-T413 RNA level was significantly enhanced in splenocytes from SAMP8-2 m mice. This agreed with serum M-T413 protein alterations and a strikingly lower blood CD4+ T cell count in SAMP8 mice when compared to the age-matched SAMR1 mice, with the latter negatively correlating with serum M-T413 protein volume. Age-related changes in serum proteins favored an increase in autoantibodies and alpha-fetoprotein and a decrease of apolipoprotein A-II, which occurred in SAMP8 mice at 2 months of age and onwards. These proteins may serve as candidate biomarkers for early aging.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The CYP2D6 enzyme is crucial for the metabolism of tamoxifen. The CYP2D6 gene is highly polymorphic, and individuals can be extensive, intermediate, or poor tamoxifen metabolizers. The aim of this study was to determine the frequencies of the CYP2D6 *3, *4, and *10 alleles in women with breast cancer who were treated with tamoxifen and analyze the association of enzyme activity with prognostic factors and disease-free survival. We observed a high frequency of CYP2D6 *10, with an allelic frequency of 0.14 (14.4%). The *3 allele was not present in the studied population, and *4 had an allelic frequency of 0.13 (13.8%). We conclude that patients with reduced CYP2D6 activity did not present worse tumor characteristics or decreased disease-free survival than women with normal enzyme activity, as the difference was not statistically significant. We also observed a high frequency of CYP2D6 *10, which had not been previously described in this specific population. This study is the first in north-northeastern Brazil that aimed to contribute to the knowledge of the Brazilian regional profile for CYP2D6 polymorphisms and their phenotypes. These findings add to the knowledge of the distribution of different polymorphic CYP2D6 alleles and the potential role of CYP2D6 genotyping in clinical practice prior to choosing therapeutic protocols.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Limonene is a monoterpene obtained in large amounts from essential oils and is used as a raw material for the synthesis of flavors and fine chemicals. Several pathways or routes for the microbial degradation of limonene making use of the cytochrome P450-dependent monooxygenases have been described. In this study, we present a fermentative screening of microorganisms in order to verify their ability to perform the desirable conversion. In parallel, the PCR technique was used to select the microorganisms that contain the limC gene, which is responsible for the conversion of carveol to carvone. The microorganisms selected by PCR were not able to bioconvert limonene. From this result, we can suppose that these strains do not have the gene that codifies the enzyme responsible for the transformation of limonene into carveol. The results obtained in the fermentative screening showed that 4 microorganisms were able to bioconvert limonene into carveol. In addition, the amplification results showed the presence of fragments of 800 pb, expected for the limC gene. Therefore, the results obtained in the bioconversion and evaluation of the limC gene did not allow a correlation showing that these strains do not contain all the enzymes responsible for the conversion of limonene to carvone.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The neuropeptide Th1RFamide with the sequence Phe-Met-Arg-Phe-amide was originally isolated in the clam Macrocallista nimbosa (price and Greenberg, 1977). Since its discovery, a large family ofFl\1RFamide-related peptides termed FaRPs have been found to be present in all major animal phyla with functions ranging from modulation of neuronal activity to alteration of muscular contractions. However, little is known about the genetics encoding these peptides, especially in invertebrates. As FaRP-encoding genes have yet to be investigated in the invertebrate Malacostracean subphylum, the isolation and characterization ofFaRP-encoding DNA and mRNA was pursued in this project. The immediate aims of this thesis were: (1) to amplify mRNA sequences of Procambarus clarkii using a degenerate oligonucleotide primer deduced from the common amino acid sequence ofisolated Procambarus FaRPS, (2) to determine if these amplification products encode FaRP gene sequences, and (3) to create a selective cDNA library of sequences recognized by the degenerate oligonucleotide primer. The polymerase chain reaction - rapid amplification of cDNA ends (PCR-RACE) is a procedure in which a single gene-specific primer is used in conjunction with a generalized 3' or 5' primer to amplify copies ofthe region between a single point in the transcript and the 3' or 5' end of cDNA of interest (Frohman et aI., 1988). PCRRACE reactions were optimized with respect to primers used, buffer composition, cycle number, nature ofgenetic substrate to be amplified, annealing, extension and denaturation temperatures and times, and use of reamplification procedures. Amplification products were cloned into plasmid vectors and recombinant products were isolated, as were the recombinant plaques formed in the selective cDNA library. Labeled amplification products were hybridized to recombinant bacteriophage to determine ligated amplification product presence. When sequenced, the five isolated PCR-RACE amplification products were determined not to possess FaRP-encoding sequences. The 200bp, 450bp, and 1500bp sequences showed homology to the Caenorhabditis elegans cosmid K09A11, which encodes for cytochrome P450; transfer-RNA; transposase; and tRNA-Tyr, while the 500bp and 750bp sequences showed homology with the complete genome of the Vaccinia virus. Under the employed amplification conditions the degenerate oligonucleotide primer was observed to bind to and to amplify sequences with either 9 or 10bp of 17bp identity. The selective cDNA library was obselVed to be of extremely low titre. When library titre was increased, white. plaques were isolated. Amplification analysis of eight isolated Agt11 sequences from these plaques indicated an absence of an insertion sequence. The degenerate 17 base oligonucleotide primer synthesized from the common amino acid sequence ofisolated Procambarus FaRPs was thus determined to be non-specific in its binding under the conditions required for its use, and to be insufficient for the isolation and identification ofFaRP-encoding sequences. A more specific primer oflonger sequence, lower degeneracy, and higher melting temperature (TJ is recommended for further investigation into the FaRP-encoding genes of Procambarlls clarkii.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Les propriétés pharmacocinétiques d’un nouveau médicament et les risques d’interactions médicamenteuses doivent être investigués très tôt dans le processus de recherche et développement. L’objectif principal de cette thèse était de concevoir des approches prédictives de modélisation du devenir du médicament dans l’organisme en présence et en absence de modulation d’activité métabolique et de transport. Le premier volet de recherche consistait à intégrer dans un modèle pharmacocinétique à base physiologique (PBPK), le transport d’efflux membranaire gouverné par les glycoprotéines-P (P-gp) dans le cœur et le cerveau. Cette approche, basée sur des extrapolations in vitro-in vivo, a permis de prédire la distribution tissulaire de la dompéridone chez des souris normales et des souris déficientes pour les gènes codant pour la P-gp. Le modèle a confirmé le rôle protecteur des P-gp au niveau cérébral, et a suggéré un rôle négligeable des P-gp dans la distribution tissulaire cardiaque pour la dompéridone. Le deuxième volet de cette recherche était de procéder à l’analyse de sensibilité globale (ASG) du modèle PBPK précédemment développé, afin d’identifier les paramètres importants impliqués dans la variabilité des prédictions, tout en tenant compte des corrélations entre les paramètres physiologiques. Les paramètres importants ont été identifiés et étaient principalement les paramètres limitants des mécanismes de transport à travers la membrane capillaire. Le dernier volet du projet doctoral consistait à développer un modèle PBPK apte à prédire les profils plasmatiques et paramètres pharmacocinétiques de substrats de CYP3A administrés par voie orale à des volontaires sains, et de quantifier l’impact d’interactions médicamenteuses métaboliques (IMM) sur la pharmacocinétique de ces substrats. Les prédictions des profils plasmatiques et des paramètres pharmacocinétiques des substrats des CYP3A ont été très comparables à ceux mesurés lors d’études cliniques. Quelques écarts ont été observés entre les prédictions et les profils plasmatiques cliniques mesurés lors d’IMM. Cependant, l’impact de ces inhibitions sur les paramètres pharmacocinétiques des substrats étudiés et l’effet inhibiteur des furanocoumarins contenus dans le jus de pamplemousse ont été prédits dans un intervalle d’erreur très acceptable. Ces travaux ont contribué à démontrer la capacité des modèles PBPK à prédire les impacts pharmacocinétiques des interactions médicamenteuses avec une précision acceptable et prometteuse.