Prédiction des impacts pharmacocinétiques des interactions médicamenteuses impliquant des CYP3A et les glycoprotéines-P : développement de modèles physiologiques et analyse de sensibilité
Contribuinte(s) |
Nekka, Fahima Turgeon, Jacques |
---|---|
Data(s) |
19/03/2010
31/12/1969
19/03/2010
04/02/2010
01/11/2009
|
Resumo |
Les propriétés pharmacocinétiques d’un nouveau médicament et les risques d’interactions médicamenteuses doivent être investigués très tôt dans le processus de recherche et développement. L’objectif principal de cette thèse était de concevoir des approches prédictives de modélisation du devenir du médicament dans l’organisme en présence et en absence de modulation d’activité métabolique et de transport. Le premier volet de recherche consistait à intégrer dans un modèle pharmacocinétique à base physiologique (PBPK), le transport d’efflux membranaire gouverné par les glycoprotéines-P (P-gp) dans le cœur et le cerveau. Cette approche, basée sur des extrapolations in vitro-in vivo, a permis de prédire la distribution tissulaire de la dompéridone chez des souris normales et des souris déficientes pour les gènes codant pour la P-gp. Le modèle a confirmé le rôle protecteur des P-gp au niveau cérébral, et a suggéré un rôle négligeable des P-gp dans la distribution tissulaire cardiaque pour la dompéridone. Le deuxième volet de cette recherche était de procéder à l’analyse de sensibilité globale (ASG) du modèle PBPK précédemment développé, afin d’identifier les paramètres importants impliqués dans la variabilité des prédictions, tout en tenant compte des corrélations entre les paramètres physiologiques. Les paramètres importants ont été identifiés et étaient principalement les paramètres limitants des mécanismes de transport à travers la membrane capillaire. Le dernier volet du projet doctoral consistait à développer un modèle PBPK apte à prédire les profils plasmatiques et paramètres pharmacocinétiques de substrats de CYP3A administrés par voie orale à des volontaires sains, et de quantifier l’impact d’interactions médicamenteuses métaboliques (IMM) sur la pharmacocinétique de ces substrats. Les prédictions des profils plasmatiques et des paramètres pharmacocinétiques des substrats des CYP3A ont été très comparables à ceux mesurés lors d’études cliniques. Quelques écarts ont été observés entre les prédictions et les profils plasmatiques cliniques mesurés lors d’IMM. Cependant, l’impact de ces inhibitions sur les paramètres pharmacocinétiques des substrats étudiés et l’effet inhibiteur des furanocoumarins contenus dans le jus de pamplemousse ont été prédits dans un intervalle d’erreur très acceptable. Ces travaux ont contribué à démontrer la capacité des modèles PBPK à prédire les impacts pharmacocinétiques des interactions médicamenteuses avec une précision acceptable et prometteuse. Early knowledge of pharmacokinetic properties of a new drug candidate and good characterization of the impact of drug-drug interaction (DDI) on those properties is of crucial importance in the process of drug research and development. The main objective of this thesis consisted in the conception of PBPK models able to predict the drug disposition in the absence and presence of metabolic and transport activity modulation. The first part of this work aimed to develop a PBPK model that incorporates the efflux function of P-gp expressed in various tissues, in order to predict the impact of P-gp activity modulation on drug distribution. This approach, based on in vivo-in vitro extrapolation for estimating the transport-related parameters, allowed the prediction of domperidone distribution in heart and brain of wild-type mice and P-gp deficient mice. The model pointed out the protective function of P-gp in brain whereas it showed the negligible protective effect of P-gp in heart. The second part of the project aimed to perform the global sensitivity analysis of the previous PBPK model, in order to investigate how the uncertainly and variability of the correlated physiological parameters influence the outcome of the drug distribution process. While a moderate variability of the model predictions was observed, this analysis confirmed the importance for a better quantitative characterization of parameters related to the transport processes trough the blood-tissue membrane. Accounting for the input correlation allowed the delineation of the true contribution of each input to the variability of the model outcome. The last part of the project consisted in predicting the pharmacokinetics of selected CYP3A substrates administered at a single oral dose to human, alone or with an inhibitor. Successful predictions were obtained for a single administration of the CYP3A substrates. Some deviations were observed between the predictions and in vivo plasma profiles in the presence of DDI. However, the impact of inhibition on the PK parameters of the selected substrates and the impact of grapefruit juice-mediated inhibition on the extent of intestinal pre-systemic elimination were predicted within a very acceptable error range. Overall, this thesis demonstrated the ability of PBPK models to predict DDI with promising accuracy. |
Identificador | |
Idioma(s) |
fr |
Palavras-Chave | #Modèle pharmacocinétique à base physiologique #Physiologically based pharmacokinetic model #Interactions médicamenteuses #Drug interactions #P-glycoprotéine #P-glycoprotein #Cytochrome P450 3A #Analyse de sensibilité #Sensitivity analysis #Health Sciences - Pharmacy / Sciences de la santé - Pharmacie (UMI : 0572) |
Tipo |
Thèse ou Mémoire numérique / Electronic Thesis or Dissertation |