970 resultados para Counterfactual conditional


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We develop a new autoregressive conditional process to capture both the changes and the persistency of the intraday seasonal (U-shape) pattern of volatility in essay 1. Unlike other procedures, this approach allows for the intraday volatility pattern to change over time without the filtering process injecting a spurious pattern of noise into the filtered series. We show that prior deterministic filtering procedures are special cases of the autoregressive conditional filtering process presented here. Lagrange multiplier tests prove that the stochastic seasonal variance component is statistically significant. Specification tests using the correlogram and cross-spectral analyses prove the reliability of the autoregressive conditional filtering process. In essay 2 we develop a new methodology to decompose return variance in order to examine the informativeness embedded in the return series. The variance is decomposed into the information arrival component and the noise factor component. This decomposition methodology differs from previous studies in that both the informational variance and the noise variance are time-varying. Furthermore, the covariance of the informational component and the noisy component is no longer restricted to be zero. The resultant measure of price informativeness is defined as the informational variance divided by the total variance of the returns. The noisy rational expectations model predicts that uninformed traders react to price changes more than informed traders, since uninformed traders cannot distinguish between price changes caused by information arrivals and price changes caused by noise. This hypothesis is tested in essay 3 using intraday data with the intraday seasonal volatility component removed, as based on the procedure in the first essay. The resultant seasonally adjusted variance series is decomposed into components caused by unexpected information arrivals and by noise in order to examine informativeness.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Omnibus tests of significance in contingency tables use statistics of the chi-square type. When the null is rejected, residual analyses are conducted to identify cells in which observed frequencies differ significantly from expected frequencies. Residual analyses are thus conditioned on a significant omnibus test. Conditional approaches have been shown to substantially alter type I error rates in cases involving t tests conditional on the results of a test of equality of variances, or tests of regression coefficients conditional on the results of tests of heteroscedasticity. We show that residual analyses conditional on a significant omnibus test are also affected by this problem, yielding type I error rates that can be up to 6 times larger than nominal rates, depending on the size of the table and the form of the marginal distributions. We explored several unconditional approaches in search for a method that maintains the nominal type I error rate and found out that a bootstrap correction for multiple testing achieved this goal. The validity of this approach is documented for two-way contingency tables in the contexts of tests of independence, tests of homogeneity, and fitting psychometric functions. Computer code in MATLAB and R to conduct these analyses is provided as Supplementary Material.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Esta tesis doctoral nace con el propósito de entender, analizar y sobre todo modelizar el comportamiento estadístico de las series financieras. En este sentido, se puede afirmar que los modelos que mejor recogen las especiales características de estas series son los modelos de heterocedasticidad condicionada en tiempo discreto,si los intervalos de tiempo en los que se recogen los datos lo permiten, y en tiempo continuo si tenemos datos diarios o datos intradía. Con esta finalidad, en esta tesis se proponen distintos estimadores bayesianos para la estimación de los parámetros de los modelos GARCH en tiempo discreto (Bollerslev (1986)) y COGARCH en tiempo continuo (Kluppelberg et al. (2004)). En el capítulo 1 se introducen las características de las series financieras y se presentan los modelos ARCH, GARCH y COGARCH, así como sus principales propiedades. Mandelbrot (1963) destacó que las series financieras no presentan estacionariedad y que sus incrementos no presentan autocorrelación, aunque sus cuadrados sí están correlacionados. Señaló también que la volatilidad que presentan no es constante y que aparecen clusters de volatilidad. Observó la falta de normalidad de las series financieras, debida principalmente a su comportamiento leptocúrtico, y también destacó los efectos estacionales que presentan las series, analizando como se ven afectadas por la época del año o el día de la semana. Posteriormente Black (1976) completó la lista de características especiales incluyendo los denominados leverage effects relacionados con como las fluctuaciones positivas y negativas de los precios de los activos afectan a la volatilidad de las series de forma distinta.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Intermittent exporting is something of a puzzle. In theory, exporting represents a major commitment, and is often the starting point for further internationalisation. However, intermittent exporters exit and subsequently re-enter exporting, sometimes frequently. We develop a conceptual model to explain how firm characteristics and market conditions interact to affect the decision to exit and re-enter exporting, and model this process using an extensive dataset of French manufacturing firms from 1997 to 2007. As anticipated, smaller and less productive firms are more likely to exit exporting, and react more strongly to changes in both domestic and foreign markets than larger firms. Exit and re-entry are closely linked. Firms with a low exit probability also have a high likelihood of re-entry, and vice versa. However, the way in which firms react to market conditions at the time of exit matters greatly in determining the likelihood of re-entry: thus re-entry depends crucially on the strategic rationale for exit. Our analysis helps explain the opportunistic and intermittent exporting of (mainly) small firms, the demand conditions under which intermittent exporting is most likely to occur, and the firm attributes most likely to give rise to such behavior.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper considers identification of treatment effects when the outcome variables and covari-ates are not observed in the same data sets. Ecological inference models, where aggregate out-come information is combined with individual demographic information, are a common example of these situations. In this context, the counterfactual distributions and the treatment effects are not point identified. However, recent results provide bounds to partially identify causal effects. Unlike previous works, this paper adopts the selection on unobservables assumption, which means that randomization of treatment assignments is not achieved until time fixed unobserved heterogeneity is controlled for. Panel data models linear in the unobserved components are con-sidered to achieve identification. To assess the performance of these bounds, this paper provides a simulation exercise.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although counterfactual thinking is typically activated by a negative outcome, it can have positive effects by helping to regulate and improve future behavior. Known as the content-specific pathway, these counterfactual ruminations use relevant information (i.e., information that is directly related to the problem at hand) to elicit insights about the problem, create a connection between the counterfactual and the desired behavior, and strengthen relevant behavioral intentions. The current research examines how changing the type of relevant information provided (i.e., so that it is either concrete and detailed or general and abstract) influences the relationship between counterfactual thinking and behavioral intentions. Experiments 1 and 2 found that counterfactual thinking facilitated relevant intentions when these statements involved detailed information (Experiment 1) or specific behaviors (Experiment 2) compared to general information (Experiment 1), categories of behavior, or traits (Experiment 2). Experiment 3 found that counterfactuals containing a category of behavior facilitated specific behavioral intentions, relative to counterfactuals focusing on a trait. However, counterfactuals only facilitated intentions that included specific behaviors, but not when intentions focused on categories of behaviors or traits (Experiment 4). Finally, this effect generalized to other relevant specific behaviors; a counterfactual based on one relevant specific behavior facilitated an intention based on another relevant specific behavior (Experiment 5). Together, these studies further clarify our understanding of the content-specific pathway and provide a more comprehensive understanding of functional counterfactual thinking.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We implement conditional moment closure (CMC) for simulation of chemical reactions in laminar chaotic flows. The CMC approach predicts the expected concentration of reactive species, conditional upon the concentration of a corresponding nonreactive scalar. Closure is obtained by neglecting the difference between the local concentration of the reactive scalar and its conditional average. We first use a Monte Carlo method to calculate the evolution of the moments of a conserved scalar; we then reconstruct the corresponding probability density function and dissipation rate. Finally, the concentrations of the reactive scalars are determined. The results are compared (and show excellent agreement) with full numerical simulations of the reaction processes in a chaotic laminar flow. This is a preprint of an article published in AlChE Journal copyright (2007) American Institute of Chemical Engineers: http://www3.interscience.wiley.com/

Relevância:

20.00% 20.00%

Publicador:

Resumo:

International audience

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, we present a sound and complete axiomatic system for conditional attribute implications (CAIs) in Triadic Concept Analysis (TCA). Our approach is strongly based on the Simplification paradigm which offers a more suitable way for automated reasoning than the one based on Armstrong’s Axioms. We also present an automated method to prove the derivability of a CAI from a set of CAI s.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper evaluates the performance of a survivorship bias-free data set of Portuguese funds investing in Euro-denominated bonds by using conditional models that consider the public information available to investors when the returns are generated. We find that bond funds underperform the market significantly and by an economically relevant magnitude. This underperformance cannot be explained by the expenses they charge. Our findings support the use of conditional performance evaluation models, since we find strong evidence of both time-varying risk and performance, dependent on the slope of the term structure and the inverse relative wealth variables. We also show that survivorship bias has a significant impact on performance estimates. Furthermore, during the European debt crisis, bond fund managers performed significantly better than in non-crisis periods and were able to achieve neutral performance. This improved performance throughout the crisis seems to be related to changes in funds’ investment styles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this PhD thesis a new firm level conditional risk measure is developed. It is named Joint Value at Risk (JVaR) and is defined as a quantile of a conditional distribution of interest, where the conditioning event is a latent upper tail event. It addresses the problem of how risk changes under extreme volatility scenarios. The properties of JVaR are studied based on a stochastic volatility representation of the underlying process. We prove that JVaR is leverage consistent, i.e. it is an increasing function of the dependence parameter in the stochastic representation. A feasible class of nonparametric M-estimators is introduced by exploiting the elicitability of quantiles and the stochastic ordering theory. Consistency and asymptotic normality of the two stage M-estimator are derived, and a simulation study is reported to illustrate its finite-sample properties. Parametric estimation methods are also discussed. The relation with the VaR is exploited to introduce a volatility contribution measure, and a tail risk measure is also proposed. The analysis of the dynamic JVaR is presented based on asymmetric stochastic volatility models. Empirical results with S&P500 data show that accounting for extreme volatility levels is relevant to better characterize the evolution of risk. The work is complemented by a review of the literature, where we provide an overview on quantile risk measures, elicitable functionals and several stochastic orderings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this thesis is to clarify the role of non-equilibrium stationary currents of Markov processes in the context of the predictability of future states of the system. Once the connection between the predictability and the conditional entropy is established, we provide a comprehensive approach to the definition of a multi-particle Markov system. In particular, starting from the well-known theory of random walk on network, we derive the non-linear master equation for an interacting multi-particle system under the one-step process hypothesis, highlighting the limits of its tractability and the prop- erties of its stationary solution. Lastly, in order to study the impact of the NESS on the predictability at short times, we analyze the conditional entropy by modulating the intensity of the stationary currents, both for a single-particle and a multi-particle Markov system. The results obtained analytically are numerically tested on a 5-node cycle network and put in correspondence with the stationary entropy production. Furthermore, because of the low dimensionality of the single-particle system, an analysis of its spectral properties as a function of the modulated stationary currents is performed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This article analyzes food insecurity and hunger in Brazilian families with children under five years of age. This was a nationally representative cross-sectional study using data from the National Demographic and Health Survey on Women and Children (PNDS-2006), in which the outcome variable was moderate to severe food insecurity, measured by the Brazilian Food Insecurity Scale (EBIA). Prevalence estimates and prevalence ratios were generated with 95% confidence intervals. The results showed a high prevalence of moderate to severe food insecurity, concentrated in the North and Northeast regions (30.7%), in economic classes D and E (34%), and in beneficiaries of conditional cash transfer programs (36.5%). Multivariate analysis showed that the socioeconomic relative risks (beneficiaries of conditional cash transfers), regional relative risks (North and Northeast regions), and economic relative risks (classes D and E) were 1.8, 2.0 and 2.4, respectively. Aggregation of the three risks showed 48% of families with moderate to severe food insecurity, meaning that adults and children were going hungry during the three months preceding the survey.