993 resultados para Constant Molar Flow
Resumo:
The arteriovenous fistula (AVF) is characterized by enhanced blood flow and is the most widely used vascular access for chronic haemodialysis (Sivanesan et al., 1998). A large proportion of the AVF late failures are related to local haemodynamics (Sivanesan et al., 1999a). As in AVF, blood flow dynamics plays an important role in growth, rupture, and surgical treatment of aneurysm. Several techniques have been used to study the flow patterns in simplified models of vascular anastomose and aneurysm. In the present investigation, Computational Fluid Dynamics (CFD) is used to analyze the flow patterns in AVF and aneurysm through the velocity waveform obtained from experimental surgeries in dogs (Galego et al., 2000), as well as intra-operative blood flow recordings of patients with radiocephalic AVF ( Sivanesan et al., 1999b) and physiological pulses (Aires, 1991), respectively. The flow patterns in AVF for dog and patient surgeries data are qualitatively similar. Perturbation, recirculation and separation zones appeared during cardiac cycle, and these were intensified in the diastole phase for the AVF and aneurysm models. The values of wall shear stress presented in this investigation of AVF and aneurysm models oscillated in the range that can both cause damage to endothelial cells and develop atherosclerosis.
Resumo:
This paper deals with the calculation of the discrete approximation to the full spectrum for the tangent operator for the stability problem of the symmetric flow past a circular cylinder. It is also concerned with the localization of the Hopf bifurcation in laminar flow past a cylinder, when the stationary solution loses stability and often becomes periodic in time. The main problem is to determine the critical Reynolds number for which a pair of eigenvalues crosses the imaginary axis. We thus present a divergence-free method, based on a decoupling of the vector of velocities in the saddle-point system from the vector of pressures, allowing the computation of eigenvalues, from which we can deduce the fundamental frequency of the time-periodic solution. The calculation showed that stability is lost through a symmetry-breaking Hopf bifurcation and that the critical Reynolds number is in agreement with the value presented in reported computations. (c) 2007 IMACS. Published by Elsevier B.V. All rights reserved.
Resumo:
Dynamic experiments in a nonadiabatic packed bed were carried out to evaluate the response to disturbances in wall temperature and inlet airflow rate and temperature. A two-dimensional, pseudo-homogeneous, axially dispersed plug-flow model was numerically solved and used to interpret the results. The model parameters were fitted in distinct stages: effective radial thermal conductivity (K (r)) and wall heat transfer coefficient (h (w)) were estimated from steady-state data and the characteristic packed bed time constant (tau) from transient data. A new correlation for the K (r) in packed beds of cylindrical particles was proposed. It was experimentally proved that temperature measurements using radially inserted thermocouples and a ring-shaped sensor were not distorted by heat conduction across the thermocouple or by the thermal inertia effect of the temperature sensors.
Resumo:
The rheological behavior of milk cream was studied for different fat contents (0.10 to 0.31) and for a wide temperature range (2 and 87C) using a rotational rheometer. Newtonian behavior was observed, except for fat content between 0.20 and 0.31 and temperature between 2 and 33C, where viscoplastic behavior was remarkable. The rheological parameters (Newtonian viscosity, plastic viscosity and yield stress) and density were well correlated to temperature and fat content. Tube friction factor during flow of cream was experimentally obtained at various flow rates, temperatures and tube diameters (86 < Re < 2.3 x 104, 38 < Re(B) < 8.8 x 103, 1.1 x 103 < He < 6.7 x 103). The proposed correlations for density and rheological parameters were applied for the prediction of friction factor for laminar and turbulent flow of cream using well-known equations for Newtonian and viscoplastic flow. The good agreement between experimental and predicted values confirms the reliability of the proposed correlations for describing the flow behavior of cream. PRACTICAL APPLICATIONS This paper presents correlations for the calculation of density and rheological parameters (Newtonian viscosity, Bingham plastic viscosity and yield stress) of milk cream as functions of temperature (2-87C) and fat content (0.10-0.31). Because of the large temperature range, the proposed correlations are useful for process design and optimization in dairy processing. An example of practical application is presented in the text, where the correlations were applied for the prediction of friction factor for laminar and turbulent tube flow of cream using well-known equations for Newtonian and viscoplastic flow, which are summarized in the text. The comparison with experimental data obtained at various flow rates, temperatures and tube diameters showed a good agreement, which confirms the reliability of the proposed correlations.
Resumo:
The study of non-Newtonian flow in plate heat exchangers (PHEs) is of great importance for the food industry. The objective of this work was to study the pressure drop of pineapple juice in a PHE with 50 degrees chevron plates. Density and flow properties of pineapple juice were determined and correlated with temperature (17.4 <= T <= 85.8 degrees C) and soluble solids content (11.0 <= X(s) <= 52.4 degrees Brix). The Ostwald-de Waele (power law) model described well the rheological behavior. The friction factor for non-isothermal flow of pineapple juice in the PHE was obtained for diagonal and parallel/side flow. Experimental results were well correlated with the generalized Reynolds number (20 <= Re(g) <= 1230) and were compared with predictions from equations from the literature. The mean absolute error for pressure drop prediction was 4% for the diagonal plate and 10% for the parallel plate.
Resumo:
Demands for optimal boiler performance and increased concerns in lowering emission have always been the driving force in the reevaluation and evolution of the Kraft boiler: specifically the air distribution strategies that are directly related to achieving increased residence time of flue gas combustion inside the furnace which in turn lowers atmosphere emission levels and enhances boiler operation. This paper presents the results of a study that analyzes the interaction of the different multilevel air injections have on flue gas flow patterns including various quaternary air supply arrangements. Additionally, this study assesses the performance of the CFD (Computational Fluid Dynamics) model against data available in literature. Simulations were performed considering isothermal and incompressible flows, and did not take into account thermal phenomena or chemical reactions. The numerical solutions generated proved to be coherently related to the data available in literature, and provided proof of the efficiency of tertiary level air injection, as well as revealed that quaternary air injection ports arranged in a symmetrical configuration is most suitable for optimal equipment operation. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Static mixers with improved performance were developed from CFD simulations in a stepwise approach. The relevant geometric features of simple mixer designs and the corresponding mixing mechanisms-laminar shear, elongational flow, and distributive mixing-were identified first. This information was used to formulate guidelines for the development of new geometries. The solid elements of the static mixer should: (a) provide restrictions to the flow; (b) deflect the flow; (c) be sequentially rotated around the flow direction to provide symmetry; (d) extend from the center of the pipe to the vicinity of the walls to avoid short-circuiting; and (e) distribute and remix the flow. Based on these guidelines, two improved mixer designs were developed: the DS A-I mixer has a good mixing efficiency and an acceptable pressure drop; the Fins 35 degrees mixer is more efficient and compact, but requires a larger pressure drop. Their performance indicates that their use is possible on industrial applications.
Resumo:
For the optimal design of plate heat exchangers (PHEs), an accurate thermal-hydraulic model that takes into account the effect of the flow arrangement on the heat load and pressure drop is necessary. In the present study, the effect of the flow arrangement on the pressure drop of a PHE is investigated. Thirty two different arrangements were experimentally tested using a laboratory scale PHE with flat plates. The experimental data was used for (a) determination of an empirical correlation for the effect of the number of passes and number of flow channels per pass on the pressure drop; (b) validation of a friction factor model through parameter estimation; and (c) comparison with the simulation results obtained with a CFD (computational fluid dynamics) model of the PHE. All three approaches resulted in a good agreement between experimental and predicted values of pressure drop. Moreover, the CFD model is used for evaluating the flow maldistribution in a PHE with two channels Per Pass. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
We derive an easy-to-compute approximate bound for the range of step-sizes for which the constant-modulus algorithm (CMA) will remain stable if initialized close to a minimum of the CM cost function. Our model highlights the influence, of the signal constellation used in the transmission system: for smaller variation in the modulus of the transmitted symbols, the algorithm will be more robust, and the steady-state misadjustment will be smaller. The theoretical results are validated through several simulations, for long and short filters and channels.
Resumo:
Silicon carbide thin films (Si(x)C(y)) were deposited in a RF (13.56 MHz) magnetron sputtering system using a sintered SiC target (99.5% purity). In situ doping was achieved by introducing nitrogen into the electric discharge during the growth process of the films. The N(2)/Ar flow ratio was adjusted by varying the N(2) flow rate and maintaining constant the Ar flow rate. The structure, composition and bonds formed in the nitrogen-doped Si (x) C (y) thin films were investigated by X-ray diffraction (XRD), Rutherford backscattering spectroscopy (RBS), Raman spectroscopy and Fourier transform infrared spectrometry (FTIR) techniques. RBS results indicate that the carbon content in the film decreases as the N(2)/Ar flow ratio increases. Raman spectra clearly reveal that the deposited nitrogen-doped SiC films are amorphous and exhibited C-C bonds corresponding to D and G bands. After thermal annealing, the films present structural modifications that were identified by XRD, Raman and FTIR analyses.
Resumo:
The integration of optical detection methods in continuous flow microsystems can highly extend their range of application, as long as some negative effects derived from their scaling down can be minimized. Downsizing affects to a greater extent the sensitivity of systems based on absorbance measurements than the sensitivity of those based on emission ones. However, a careful design of the instrumental setup is needed to maintain the analytical features in both cases. In this work, we present the construction and evaluation of a simple miniaturized optical system, which integrates a novel flow cell configuration to carry out chemiluminescence (CL) measurements using a simple photodiode. It consists of a micro-mixer based on a vortex structure, which has been constructed by means of the low-temperature cofired ceramics (LTCC) technology. This mixer not only efficiently promotes the CL reaction due to the generated high turbulence but also allows the detection to be carried out in the same area, avoiding intensity signal losses. As a demonstration, a flow injection system has been designed and optimized for the detection of cobalt(H) in water samples. It shows a linear response between 2 and 20 mu M with a correlation of r > 0.993, a limit of detection of 1.1 mu M, a repeatability of RSD = 12.4 %, and an analysis time of 17 s. These results demonstrate the suitability of the proposal to the determination of compounds involved in CL reactions by means of an easily constructed versatile device based on low-cost instrumentation.
Resumo:
The aim of this work was the development of miniaturized structures useful for retention and/or selection of particles and viscous substances from a liquid flow. The proposed low costs structures are similar to macroscopic wastewater treatment systems, named baffles, and allow disassemble. They were simulated using FEMLAB 3.2b package and manufactured in acrylic with conventional tools. Tests for retention or selection of particles in water or air and viscous fluids in water were carried out. Either in air or water particles with 50 mu m diameter will be retained but not with 13 mu m diameter. In aqueous flow, it is also possible the retention of viscous samples, such as silicone 350 cSt. The simulated results showed good agreement with experimental measurements. These miniaturized structures can be useful in sample pretreatment for chemical analysis and microorganism manipulation. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
This work presents results of preliminary studies concerning application of magnetic bearing in a ventricular assist device (VAD) being developed by Dante Pazzanese Institute of Cardiology-IDPC (Sao Paulo, Brazil). The VAD-IDPC has a novel architecture that distinguishes from other known VADs. In this, the rotor has a conical geometry with spiral impellers, showing characteristics that are intermediate between a centrifugal VAD and an axial VAD. The effectiveness of this new type of blood pumping principle was showed by tests and by using it in heart surgery for external blood circulation. However, the developed VAD uses a combination of ball bearings and mechanical seals, limiting the life for some 10 h, making impossible its long-term use or its use as an implantable VAD. As a part of development of an implantable VAD, this work aims at the replacement of ball bearings by a magnetic bearing. The most important magnetic bearing principles are studied and the magnetic bearing developed by Escola Politecnica of Sao Paulo University (EPUSP-MB) is elected because of its very simple architecture. Besides presenting the principle of the EPUSP-MB, this work presents one possible alternative for applying the EPUSP-MB in the IDPC-VAD.
Resumo:
In the development of a ventricular assist device, computational fluid dynamics (CFD) analysis is an efficient tool to obtain the best design before making the final prototype. In this study, different designs of a centrifugal blood pump were developed to investigate flow characteristics and performance. This study assumed the blood flow as being an incompressible homogeneous Newtonian fluid. A constant velocity was applied at the inlet; no slip boundary conditions were applied at device wall; and pressure boundary conditions were applied at the outlet. The CFD code used in this work was based on the finite volume method. In the future, the results of CFD analysis can be compared with flow visualization and hemolysis tests.
Resumo:
This paper presents a rheological investigation of pure gypsum (PG) and a commercial gypsum-lime-filler plaster (CP) using the modified Vicat apparatus and squeeze flow method. The samples were tested at several different intervals after manual or mechanical mixing. The results confirmed squeeze flow to be more sensitive in determining fresh paste behavior than the modified Vicat apparatus. PG set faster when prepared in mechanical mixer than when manually mixed. Conversely, the CP composition presented longer setting when mixed mechanically. The study also included the analysis of two ready-to-use polymer-based products for leveling and rendering (drywall joint compound - DJC; acrylic putty - AP) measured by squeeze flow and compared to the commercial composition. (C) 2008 Elsevier Ltd. All rights reserved.