923 resultados para Conduction channel


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we present a method for blind deconvolution of linear channels based on source separation techniques, for real word signals. This technique applied to blind deconvolution problems is based in exploiting not the spatial independence between signals but the temporal independence between samples of the signal. Our objective is to minimize the mutual information between samples of the output in order to retrieve the original signal. In order to make use of use this idea the input signal must be a non-Gaussian i.i.d. signal. Because most real world signals do not have this i.i.d. nature, we will need to preprocess the original signal before the transmission into the channel. Likewise we should assure that the transmitted signal has non-Gaussian statistics in order to achieve the correct function of the algorithm. The strategy used for this preprocessing will be presented in this paper. If the receiver has the inverse of the preprocess, the original signal can be reconstructed without the convolutive distortion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND:: Voltage-gated sodium channels dysregulation is important for hyperexcitability leading to pain persistence. Sodium channel blockers currently used to treat neuropathic pain are poorly tolerated. Getting new molecules to clinical use is laborious. We here propose a drug already marketed as anticonvulsant, rufinamide. METHODS:: We compared the behavioral effect of rufinamide to amitriptyline using the Spared Nerve Injury neuropathic pain model in mice. We compared the effect of rufinamide on sodium currents using in vitro patch clamp in cells expressing the voltage-gated sodium channel Nav1.7 isoform and on dissociated dorsal root ganglion neurons to amitriptyline and mexiletine. RESULTS:: In naive mice, amitriptyline (20 mg/kg) increased withdrawal threshold to mechanical stimulation from 1.3 (0.6-1.9) (median [95% CI]) to 2.3 g (2.2-2.5) and latency of withdrawal to heat stimulation from 13.1 (10.4-15.5) to 30.0 s (21.8-31.9), whereas rufinamide had no effect. Rufinamide and amitriptyline alleviated injury-induced mechanical allodynia for 4 h (maximal effect: 0.10 ± 0.03 g (mean ± SD) to 1.99 ± 0.26 g for rufinamide and 0.25 ± 0.22 g to 1.92 ± 0.85 g for amitriptyline). All drugs reduced peak current and stabilized the inactivated state of voltage-gated sodium channel Nav1.7, with similar effects in dorsal root ganglion neurons. CONCLUSIONS:: At doses alleviating neuropathic pain, amitriptyline showed alteration of behavioral response possibly related to either alteration of basal pain sensitivity or sedative effect or both. Side-effects and drug tolerance/compliance are major problems with drugs such as amitriptyline. Rufinamide seems to have a better tolerability profile and could be a new alternative to explore for the treatment of neuropathic pain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Methadone inhibits the cardiac potassium channel hERG and can cause a prolonged QT interval. Methadone is chiral but its therapeutic activity is mainly due to (R)-methadone. Whole-cell patch-clamp experiments using cells expressing hERG showed that (S)-methadone blocked the hERG current 3.5-fold more potently than (R)-methadone (IC50s (half-maximal inhibitory concentrations) at 37 degrees C: 2 and 7 microM). As CYP2B6 slow metabolizer (SM) status results in a reduced ability to metabolize (S)-methadone, electrocardiograms, CYP2B6 genotypes, and (R)- and (S)-methadone plasma concentrations were obtained for 179 patients receiving (R,S)-methadone. The mean heart-rate-corrected QT (QTc) was higher in CYP2B6 SMs (*6/*6 genotype; 439+/-25 ms; n=11) than in extensive metabolizers (non *6/*6; 421+/-25 ms; n=168; P=0.017). CYP2B6 SM status was associated with an increased risk of prolonged QTc (odds ratio=4.5, 95% confidence interval=1.2-17.7; P=0.03). This study reports the first genetic factor implicated in methadone metabolism that may increase the risk of cardiac arrhythmias and sudden death. This risk could be reduced by the administration of (R)-methadone.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Whether adenosine, a crucial regulator of the developing cardiovascular system, can provoke arrhythmias in the embryonic/fetal heart remains controversial. Here, we aimed to establish a mechanistic basis of how an adenosinergic stimulation alters function of the developing heart. Spontaneously beating hearts or dissected atria and ventricle obtained from 4-day-old chick embryos were exposed to adenosine or specific agonists of the receptors A(1)AR (CCPA), A(2A)AR (CGS-21680) and A(3)AR (IB-MECA). Expression of the receptors was determined by quantitative PCR. The functional consequences of blockade of NADPH oxidase, extracellular signal-regulated kinase (ERK), phospholipase C (PLC), protein kinase C (PKC) and L-type calcium channel (LCC) in combination with adenosine or CCPA, were investigated in vitro by electrocardiography. Furthermore, the time-course of ERK phosphorylation was determined by western blotting. Expression of A(1)AR, A(2A)AR and A(2B)AR was higher in atria than in ventricle while A(3)AR was equally expressed. Adenosine (100μM) triggered transient atrial ectopy and second degree atrio-ventricular blocks (AVB) whereas CCPA induced mainly Mobitz type I AVB. Atrial rhythm and atrio-ventricular propagation fully recovered after 60min. These arrhythmias were prevented by the specific A(1)AR antagonist DPCPX. Adenosine and CCPA transiently increased ERK phosphorylation and induced arrhythmias in isolated atria but not in ventricle. By contrast, A(2A)AR and A(3)AR agonists had no effect. Interestingly, the proarrhythmic effect of A(1)AR stimulation was markedly reduced by inhibition of NADPH oxidase, ERK, PLC, PKC or LCC. Moreover, NADPH oxidase inhibition or antioxidant MPG prevented both A(1)AR-mediated arrhythmias and ERK phosphorylation. These results suggest that pacemaking and conduction disturbances are induced via A(1)AR through concomitant stimulation of NADPH oxidase and PLC, followed by downstream activation of ERK and PKC with LCC as possible target.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have investigated the effect of extracellular proteases on the amiloride-sensitive Na+ current (INa) in Xenopus oocytes expressing the three subunits alpha, beta, and gamma of the rat or Xenopus epithelial Na+ channel (ENaC). Low concentrations of trypsin (2 microg/ml) induced a large increase of INa within a few minutes, an effect that was fully prevented by soybean trypsin inhibitor, but not by amiloride. A similar effect was observed with chymotrypsin, but not with kallikrein. The trypsin-induced increase of INa was observed with Xenopus and rat ENaC, and was very large (approximately 20-fold) with the channel obtained by coexpression of the alpha subunit of Xenopus ENaC with the beta and gamma subunits of rat ENaC. The effect of trypsin was selective for ENaC, as shown by the absence of effect on the current due to expression of the K+ channel ROMK2. The effect of trypsin was not prevented by intracellular injection of EGTA nor by pretreatment with GTP-gammaS, suggesting that this effect was not mediated by G proteins. Measurement of the channel protein expression at the oocyte surface by antibody binding to a FLAG epitope showed that the effect of trypsin was not accompanied by an increase in the channel protein density, indicating that proteolysis modified the activity of the channel present at the oocyte surface rather than the cell surface expression. At the single channel level, in the cell-attached mode, more active channels were observed in the patch when trypsin was present in the pipette, while no change in channel activity could be detected when trypsin was added to the bath solution around the patch pipette. We conclude that extracellular proteases are able to increase the open probability of the epithelial sodium channel by an effect that does not occur through activation of a G protein-coupled receptor, but rather through proteolysis of a protein that is either a constitutive part of the channel itself or closely associated with it.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: Pseudohypoaldosteronism type I (PHA1) is a rare inborn disease causing severe salt loss. Mutations in the three coding genes of the epithelial sodium channel (ENaC) are responsible for the systemic autosomal recessive form. So far, no phenotype has been reported in heterozygous carriers. PATIENTS: A consanguineous family from Somalia giving birth to a neonate suffering from PHA1 was studied including clinical and hormonal characteristics of the family, mutational analysis of the SCNN1A, SCNN1B, SCNN1G and CFTR genes and in vitro analysis of the functional consequences of a mutant ENaC channel. RESULTS: CFTR mutations have been excluded. SCNN1A gene analysis revealed a novel homozygous c.1684T > C mutation resulting in a S562P substitution in the alphaENaC protein of the patient. Functional analysis showed a significantly reduced S562P channel function compared to ENaC wild type. Protein synthesis and channel subunit assembly were not altered by the S562P mutation. Co-expression of mutant and wild-type channels revealed a dominant negative effect. In heterozygote carriers, sweat sodium and chloride concentrations were increased without additional hormonal or clinical phenotypes. CONCLUSION: Hence, the novel mutation S562P is causing systemic PHA1 in the homozygous state. A thorough clinical investigation of the heterozygote SCNN1A mutation carriers revealed increased sweat sodium and chloride levels consistent with a dominant effect of the mutant S562P allele. Whether this subclinical phenotype is of any consequence for the otherwise asymptomatic heterozygous carriers has to be elucidated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Champlain Sea clays of Eastern Canada are incised by numerous rivers. Their slopes have been modified by landslides: on the Chacoura River near Trois-Rivières (Quebec), several large landslide scars, more or less recent, are visible. The role of erosion (channel incision, lateral channel migration and erosion of slopes due to agricultural drainage) as a trigger of these landslides is important. The aim of this study is to understand how erosion and landslides are related to valley development. From a detailed analysis of aerial photographs and DEMs, a map of the phenomena has been drawn by identifying various elements such as landslides, limits of the slope, position of the channel, and the area covered by forest. It is shown that channel change and erosion are strongly linked to landslides by the fact that they change the bank morphology in an unstable way. A slide in itself is a natural way for the slope to achieve stability. But when it occurs in a stream, it creates a disturbance to the stream flow enhancing local erosion which may change the river path and generate more erosion downstream or upstream resulting in more slides. Cross-valley sections and a longitudinal profile show that landslides are a major factor of valley formation. It appears that the upper part of the Chacoura River valley is still unaffected by landslides and has V-shaped sections. The lower part has been subject to intense erosion and many landslide scars can be seen. This shows that the valley morphology is transient, and that future activity is more likely to occur in the upper part of the river. Therefore the identification of areas prone to erosion will help determine the possible location of future large landslides just like the ones that occurred in the lower part.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The highly amiloride-sensitive epithelial sodium channel ENaC is well known to be involved in controlling whole body sodium homeostasis and lung liquid clearance. ENaC expression has also been detected in the skin of amphibians and mammals. Mice lacking ENaC expression lose rapidly weight associated with an epidermal barrier defect that develops following birth. This dehydration is accompanied with a highly abnormal lipid matrix composition and an impaired skin surface acidification. This strongly suggests a role of ENaC in the maturation of barrier function rather than in the prenatal generation of the barrier, and may be as such an important modulator for skin hydration. In parallel, gene targeting experiments of regulators of ENaC activity, membrane serine proteases, also termed channel activating proteases, like CAP1/Prss8 and matriptase/MT-SP1 by themselves have been shown to be crucial for the epidermal barrier function. In our review, we mainly focus on the role of ENaC and its regulators in the skin and discuss their importance in the epidermal permeability barrier function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Trp(Nps)-Lys-NH2 derivatives, bearing alkyl or guanidine groups either at the N-terminus or on the Lys side-chain or at both positions were conveniently prepared on solid-phase and evaluated as TRPV1 channel antagonists.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Zebrafish and Xenopus have become popular model organisms for studying vertebrate development of many organ systems, including the heart. However, it is not clear whether the single ventricular hearts of these species possess any equivalent of the specialized ventricular conduction system found in higher vertebrates. Isolated hearts of adult zebrafish (Danio rerio) and African toads (Xenopus laevis) were stained with voltage-sensitive dye and optically mapped in spontaneous and paced rhythms followed by histological examination focusing on myocardial continuity between the atrium and the ventricle. Spread of the excitation wave through the atria was uniform with average activation times of 20 +/- 2 and 50 +/- 2 ms for zebrafish and Xenopus toads, respectively. After a delay of 47 +/- 8 and 414 +/- 16 ms, the ventricle became activated first in the apical region. Ectopic ventricular activation was propagated significantly more slowly (total ventricular activation times: 24 +/- 3 vs. 14 +/- 2 ms in zebrafish and 74 +/- 14 vs. 35 +/- 9 ms in Xenopus). Although we did not observe any histologically defined tracts of specialized conduction cells within the ventricle, there were trabecular bands with prominent polysialic acid-neural cell adhesion molecule staining forming direct myocardial continuity between the atrioventricular canal and the apex of the ventricle; i.e., the site of the epicardial breakthrough. We thus conclude that these hearts are able to achieve the apex-to-base ventricular activation pattern observed in higher vertebrates in the apparent absence of differentiated conduction fascicles, suggesting that the ventricular trabeculae serve as a functional equivalent of the His-Purkinje system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The epithelial sodium channel ENaC is physiologically important in the kidney for the regulation of the extracellular fluid volume, and in the lungs for the maintenance of the appropriate airway surface liquid volume that lines the pulmonary epithelium. Besides the regulation of ENaC by hormones, intracellular factors such as Na(+) ions, pH, or Ca(2+) are responsible for fast adaptive responses of ENaC activity to changes in the intracellular milieu. In this study, we show that ENaC is rapidly and reversibly inhibited by internal sulfhydryl-reactive molecules such as methanethiosulfonate derivatives of different sizes, the metal cations Cd(2+) and Zn(2+), or copper(II) phenanthroline, a mild oxidizing agent that promotes the formation of disulfide bonds. At the single channel level, these agents applied intracellularly induce the appearance of long channel closures, suggesting an effect on ENaC gating. The intracellular reducing agent dithiothreitol fully reverses the rundown of ENaC activity in inside-out patches. Our observations suggest that changes in intracellular redox potential modulate ENaC activity and may regulate ENaC-mediated Na(+) transport in epithelia. Finally, substitution experiments reveal that multiple cysteine residues in the amino and carboxyl termini of ENaC subunits are responsible for this thiol-mediated inhibition of ENaC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Broadcast transmission mode in ad hoc networks is critical to manage multihop routing or providing medium accesscontrol (MAC)-layer fairness. In this paper, it is shown that ahigher capacity to exchange information among neighbors may beobtained through a physical-MAC cross-layer design of the broadcastprotocol exploiting signal separation principles. Coherentdetection and separation of contending nodes is possible throughtraining sequences which are selected at random from a reducedset. Guidelines for the design of this set are derived for a lowimpact on the network performance and the receiver complexity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper analyzes the asymptotic performance of maximum likelihood (ML) channel estimation algorithms in wideband code division multiple access (WCDMA) scenarios. We concentrate on systems with periodic spreading sequences (period larger than or equal to the symbol span) where the transmitted signal contains a code division multiplexed pilot for channel estimation purposes. First, the asymptotic covariances of the training-only, semi-blind conditional maximum likelihood (CML) and semi-blind Gaussian maximum likelihood (GML) channelestimators are derived. Then, these formulas are further simplified assuming randomized spreading and training sequences under the approximation of high spreading factors and high number of codes. The results provide a useful tool to describe the performance of the channel estimators as a function of basicsystem parameters such as number of codes, spreading factors, or traffic to training power ratio.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, the theory of hidden Markov models (HMM) isapplied to the problem of blind (without training sequences) channel estimationand data detection. Within a HMM framework, the Baum–Welch(BW) identification algorithm is frequently used to find out maximum-likelihood (ML) estimates of the corresponding model. However, such a procedureassumes the model (i.e., the channel response) to be static throughoutthe observation sequence. By means of introducing a parametric model fortime-varying channel responses, a version of the algorithm, which is moreappropriate for mobile channels [time-dependent Baum-Welch (TDBW)] isderived. Aiming to compare algorithm behavior, a set of computer simulationsfor a GSM scenario is provided. Results indicate that, in comparisonto other Baum–Welch (BW) versions of the algorithm, the TDBW approachattains a remarkable enhancement in performance. For that purpose, onlya moderate increase in computational complexity is needed.