928 resultados para Computer input-output equipment
Resumo:
The pulp and paper industry is currently facing broad structural changes due to global shifts in demand and supply. These changes have significant impacts on national economies worldwide. Planted forests (especially eucalyptus) and recovered paper have quickly increased their importance as raw material for paper and paperboard production. Although advances in information and communication technologies could reduce the demand for communication papers, and the growth of paper consumption has indeed flattened in developed economies, particularly in North America and Western Europe, the consumption is increasing on a global scale. Moreover, the focal point of production and consumption is moving from the Western world to the rapidly growing markets of Southeast Asia. This study analyzes how the so-called megatrends (globalization, technological development, and increasing environmental awareness) affect the pulp and paper industry’s external environment, and seeks reliable ways to incorporate the impact of the megatrends on the models concerning the demand, trade, and use of paper and pulp. The study expands current research in several directions and points of view, for example, by applying and incorporating several quantitative methods and different models. As a result, the thesis makes a significant contribution to better understand and measure the impacts of structural changes on the pulp and paper industry. It also provides some managerial and policy implications.
Resumo:
The two central goals of this master's thesis are to serve as a guidebook on the determination of uncertainty in efficiency measurements and to investigate sources of uncertainty in efficiency measurements in the field of electric drives by a literature review, mathematical modeling and experimental means. The influence of individual sources of uncertainty on the total instrumental uncertainty is investigated with the help of mathematical models derived for a balance and a direct air cooled calorimeter. The losses of a frequency converter and an induction motor are measured with the input-output method and a balance calorimeter at 50 and 100 % loads. A software linking features of Matlab and Excel is created to process measurement data, calculate uncertainties and to calculate and visualize results. The uncertainties are combined with both the worst case and the realistic perturbation method and distributions of uncertainty by source are shown based on experimental results. A comparison of the calculated uncertainties suggests that the balance calorimeter determines losses more accurately than the input-output method with a relative RPM uncertainty of 1.46 % compared to 3.78 - 12.74 % respectively with 95 % level of confidence at the 93 % induction motor efficiency or higher. As some principles in uncertainty analysis are open to interpretation the views and decisions of the analyst can have noticeable influence on the uncertainty in the measurement result.
Resumo:
The aim of this paper is to demonstrate that, even if Marx's solution to the transformation problem can be modified, his basic conclusions remain valid. the proposed alternative solution which is presented hare is based on the constraint of a common general profit rate in both spaces and a money wage level which will be determined simultaneously with prices.
Resumo:
The aim of this paper is to demonstrate that, even if Marx's solution to the transformation problem can be modified, his basic concusions remain valid.
Resumo:
A group of agents participate in a cooperative enterprise producing a single good. Each participant contributes a particular type of input; output is nondecreasing in these contributions. How should it be shared? We analyze the implications of the axiom of Group Monotonicity: if a group of agents simultaneously decrease their input contributions, not all of them should receive a higher share of output. We show that in combination with other more familiar axioms, this condition pins down a very small class of methods, which we dub nearly serial.
Resumo:
This paper constructs and estimates a sticky-price, Dynamic Stochastic General Equilibrium model with heterogenous production sectors. Sectors differ in price stickiness, capital-adjustment costs and production technology, and use output from each other as material and investment inputs following an Input-Output Matrix and Capital Flow Table that represent the U.S. economy. By relaxing the standard assumption of symmetry, this model allows different sectoral dynamics in response to monetary policy shocks. The model is estimated by Simulated Method of Moments using sectoral and aggregate U.S. time series. Results indicate 1) substantial heterogeneity in price stickiness across sectors, with quantitatively larger differences between services and goods than previously found in micro studies that focus on final goods alone, 2) a strong sensitivity to monetary policy shocks on the part of construction and durable manufacturing, and 3) similar quantitative predictions at the aggregate level by the multi-sector model and a standard model that assumes symmetry across sectors.
Resumo:
The aim of this paper is to demonstrate that, even if Marx's solution to the transformation problem can be modified, his basic conclusions remain valid. the proposed alternative solution which is presented hare is based on the constraint of a common general profit rate in both spaces and a money wage level which will be determined simultaneously with prices.
Resumo:
With the help of an illustrative general equilibrium (CGE) model of the Moroccan Economy, we test for the significance of simulation results in the case where the exact macromesure is not known with certainty. This is done by computing lower and upper bounds for the simulation resukts, given a priori probabilities attached to three possible closures (Classical, Johansen, Keynesian). Our Conclusion is that, when there is uncertainty on closures several endogenous changes lack significance, which, in turn, limit the use of the model for policy prescriptions.
Resumo:
We highlight an example of considerable bias in officially published input-output data (factor-income shares) by an LDC (Turkey), which many researchers use without question. We make use of an intertemporal general equilibrium model of trade and production to evaluate the dynamic gains for Turkey from currently debated trade policy options and compare the predictions using conservatively adjusted, rather than official, data on factor shares.
Resumo:
We apply to the Senegalese input-output matrix of 1990, disagregated into formal and informal activities, a recently designed structural analytical method (Minimal-Flow-Analysis) which permits to depict the direct and indirect production likanges existing between activities.
Resumo:
Barsky, House and Kimball (2007) show that introducing durable goods into a sticky-price model leads to negative sectoral comovement of production following a monetary policy shock and, under certain conditions, to aggregate neutrality. These results appear to undermine sticky-price models. In this paper, we show that these results are not robust to two prominent and realistic features of the data, namely input-output interactions and limited mobility of productive inputs. When extended to allow for both features, the sticky-price model with durable goods delivers implications in line with VAR evidence on the effects of monetary policy shocks.
Resumo:
Cette recherche porte sur le financement public de l’enseignement supérieur au Pérou et ses impacts dans une perspective longitudinale couvant la période 1993-2003. Cette période est importante parce qu’elle a été témoin, dans ce pays, de changements majeurs aux plans du financement public et de la configuration du système d’enseignement supérieur. La recherche consiste principalement dans des analyses secondaires de données pertinentes publiées par des organismes nationaux et internationaux. Les analyses sont structurées à partir d’un schéma d’inputs et outputs. On considère comme inputs les ressources financières et les ressources humaines, lesquelles comprennent les professeurs et les étudiants, et comme outputs les taux de diplomation (efficacité interne) et la demande de diplômés par le marché du travail (efficacité externe). La théorie de la dépendance de ressources sert de cadre pour interpréter les rapports entre le financement public et ses incidences sur les réponses institutionnels et ses conséquences. Dans la période retenue, le financement du secteur public a décru de 32% en raison d’un désengagement progressif de l’État. Une conséquence majeure de la diminution du financement public a été la croissance rapide du secteur privé de l’enseignement supérieur. En effet, alors qu’en 1993 il y avait 24 institutions privées d’enseignement supérieur, il y en avait, en 2003, 46 institutions. La baisse du financement public et la croissance du secteur privé d’enseignement supérieur ont eu des incidences sur la sélectivité des étudiants, sur le statut des professeurs, sur l’implication des universités en recherche et sur les taux de diplomation. Le taux de sélectivité dans le secteur public a augmenté entre 1993 et 2003, alors que ce taux a diminué, dans la même période, dans le secteur privé. Ainsi, le secteur public répond à la diminution du financement en restreignant l’accès à l’enseignement supérieur. Le secteur privé, par contre, diminue sa sélectivité compensant ainsi l’augmentation de la sélectivité dans le secteur public et, par le fait même, augmente sa part de marché. Également, tant dans le secteur public que dans le secteur privé, les professeurs sont engagés principalement sur une base temporaire, ce qui se traduit, particulièrement dans le secteur privé, dans un moindre engagement institutionnel. Enfin, les universités publiques et privées du Pérou font peu de recherche, car elles favorisent, pour balancer leurs budgets, la consultation et les contrats au détriment de la recherche fondamentale. Paradoxalement, alors que, dans le secteur privé, les taux de sélectivité des étudiants diminuent, leurs taux de diplomation augmentent plus que dans le secteur public. Enfin, les formations avec plus d’étudiants inscrits, tant dans le secteur public que privé, sont les moins coûteuses en infrastructure et équipements. Dès lors, la pertinence de la production universitaire devient problématique. Cette recherche révèle que les organisations universitaires, face à un environnement où les ressources financières deviennent de plus en plus rares, développent des stratégies de survie qui peuvent avoir des incidences sur la qualité et la pertinence de l’enseignement supérieur.
Resumo:
Cette thèse étudie des modèles de séquences de haute dimension basés sur des réseaux de neurones récurrents (RNN) et leur application à la musique et à la parole. Bien qu'en principe les RNN puissent représenter les dépendances à long terme et la dynamique temporelle complexe propres aux séquences d'intérêt comme la vidéo, l'audio et la langue naturelle, ceux-ci n'ont pas été utilisés à leur plein potentiel depuis leur introduction par Rumelhart et al. (1986a) en raison de la difficulté de les entraîner efficacement par descente de gradient. Récemment, l'application fructueuse de l'optimisation Hessian-free et d'autres techniques d'entraînement avancées ont entraîné la recrudescence de leur utilisation dans plusieurs systèmes de l'état de l'art. Le travail de cette thèse prend part à ce développement. L'idée centrale consiste à exploiter la flexibilité des RNN pour apprendre une description probabiliste de séquences de symboles, c'est-à-dire une information de haut niveau associée aux signaux observés, qui en retour pourra servir d'à priori pour améliorer la précision de la recherche d'information. Par exemple, en modélisant l'évolution de groupes de notes dans la musique polyphonique, d'accords dans une progression harmonique, de phonèmes dans un énoncé oral ou encore de sources individuelles dans un mélange audio, nous pouvons améliorer significativement les méthodes de transcription polyphonique, de reconnaissance d'accords, de reconnaissance de la parole et de séparation de sources audio respectivement. L'application pratique de nos modèles à ces tâches est détaillée dans les quatre derniers articles présentés dans cette thèse. Dans le premier article, nous remplaçons la couche de sortie d'un RNN par des machines de Boltzmann restreintes conditionnelles pour décrire des distributions de sortie multimodales beaucoup plus riches. Dans le deuxième article, nous évaluons et proposons des méthodes avancées pour entraîner les RNN. Dans les quatre derniers articles, nous examinons différentes façons de combiner nos modèles symboliques à des réseaux profonds et à la factorisation matricielle non-négative, notamment par des produits d'experts, des architectures entrée/sortie et des cadres génératifs généralisant les modèles de Markov cachés. Nous proposons et analysons également des méthodes d'inférence efficaces pour ces modèles, telles la recherche vorace chronologique, la recherche en faisceau à haute dimension, la recherche en faisceau élagué et la descente de gradient. Finalement, nous abordons les questions de l'étiquette biaisée, du maître imposant, du lissage temporel, de la régularisation et du pré-entraînement.
Resumo:
The Sediment budgeting studies are done to bring out the coastal processes at work, to understand the beach-innershelf sedimentary dynamics and to assess the stability of any coastal stretch. There is a dearth of such studies as far as the Indian coast is concerned. The Chavara coast of Kollam district, Kerala, is world famous for its rich heavy mineral resources. These mineral resources are being commercially mined by the Indian Rare Earths Ltd. (IREL) and Kerala Minerals and Metals Ltd. (KMML), two Public Sector Undertakings located in the area. The impact of mining on stability of the beach has been a point of debate among the local people as well as researchers. The coastal stretch of 22km length from Neendakara to Kayamkulam which is referred to as the Chavara coast. The tidal, wind driven and continental shelf currents, there could also be the contribution of coastal trapped waves and baroclinic flow associated with the plumes of fresh water coming from the estuaries. The main objectives of the study are the hydrodynamic processes and mechanism involved in the sediment movement along the Chavara coast, Identify the different sources and sinks of beach sand along the coast, Quantify the sediment input/output into/from the coast and assess the erosion/accretion scenario of the coast.
Resumo:
Identification and Control of Non‐linear dynamical systems are challenging problems to the control engineers.The topic is equally relevant in communication,weather prediction ,bio medical systems and even in social systems,where nonlinearity is an integral part of the system behavior.Most of the real world systems are nonlinear in nature and wide applications are there for nonlinear system identification/modeling.The basic approach in analyzing the nonlinear systems is to build a model from known behavior manifest in the form of system output.The problem of modeling boils down to computing a suitably parameterized model,representing the process.The parameters of the model are adjusted to optimize a performanace function,based on error between the given process output and identified process/model output.While the linear system identification is well established with many classical approaches,most of those methods cannot be directly applied for nonlinear system identification.The problem becomes more complex if the system is completely unknown but only the output time series is available.Blind recognition problem is the direct consequence of such a situation.The thesis concentrates on such problems.Capability of Artificial Neural Networks to approximate many nonlinear input-output maps makes it predominantly suitable for building a function for the identification of nonlinear systems,where only the time series is available.The literature is rich with a variety of algorithms to train the Neural Network model.A comprehensive study of the computation of the model parameters,using the different algorithms and the comparison among them to choose the best technique is still a demanding requirement from practical system designers,which is not available in a concise form in the literature.The thesis is thus an attempt to develop and evaluate some of the well known algorithms and propose some new techniques,in the context of Blind recognition of nonlinear systems.It also attempts to establish the relative merits and demerits of the different approaches.comprehensiveness is achieved in utilizing the benefits of well known evaluation techniques from statistics. The study concludes by providing the results of implementation of the currently available and modified versions and newly introduced techniques for nonlinear blind system modeling followed by a comparison of their performance.It is expected that,such comprehensive study and the comparison process can be of great relevance in many fields including chemical,electrical,biological,financial and weather data analysis.Further the results reported would be of immense help for practical system designers and analysts in selecting the most appropriate method based on the goodness of the model for the particular context.