896 resultados para Computer aided analysis, Machine vision, Video surveillance
Resumo:
The rapid growth of the Internet and the advancements of the Web technologies have made it possible for users to have access to large amounts of on-line music data, including music acoustic signals, lyrics, style/mood labels, and user-assigned tags. The progress has made music listening more fun, but has raised an issue of how to organize this data, and more generally, how computer programs can assist users in their music experience. An important subject in computer-aided music listening is music retrieval, i.e., the issue of efficiently helping users in locating the music they are looking for. Traditionally, songs were organized in a hierarchical structure such as genre->artist->album->track, to facilitate the users’ navigation. However, the intentions of the users are often hard to be captured in such a simply organized structure. The users may want to listen to music of a particular mood, style or topic; and/or any songs similar to some given music samples. This motivated us to work on user-centric music retrieval system to improve users’ satisfaction with the system. The traditional music information retrieval research was mainly concerned with classification, clustering, identification, and similarity search of acoustic data of music by way of feature extraction algorithms and machine learning techniques. More recently the music information retrieval research has focused on utilizing other types of data, such as lyrics, user-access patterns, and user-defined tags, and on targeting non-genre categories for classification, such as mood labels and styles. This dissertation focused on investigating and developing effective data mining techniques for (1) organizing and annotating music data with styles, moods and user-assigned tags; (2) performing effective analysis of music data with features from diverse information sources; and (3) recommending music songs to the users utilizing both content features and user access patterns.
Resumo:
Engineering analysis in geometric models has been the main if not the only credible/reasonable tool used by engineers and scientists to resolve physical boundaries problems. New high speed computers have facilitated the accuracy and validation of the expected results. In practice, an engineering analysis is composed of two parts; the design of the model and the analysis of the geometry with the boundary conditions and constraints imposed on it. Numerical methods are used to resolve a large number of physical boundary problems independent of the model geometry. The time expended due to the computational process are related to the imposed boundary conditions and the well conformed geometry. Any geometric model that contains gaps or open lines is considered an imperfect geometry model and major commercial solver packages are incapable of handling such inputs. Others packages apply different kinds of methods to resolve this problems like patching or zippering; but the final resolved geometry may be different from the original geometry, and the changes may be unacceptable. The study proposed in this dissertation is based on a new technique to process models with geometrical imperfection without the necessity to repair or change the original geometry. An algorithm is presented that is able to analyze the imperfect geometric model with the imposed boundary conditions using a meshfree method and a distance field approximation to the boundaries. Experiments are proposed to analyze the convergence of the algorithm in imperfect models geometries and will be compared with the same models but with perfect geometries. Plotting results will be presented for further analysis and conclusions of the algorithm convergence
Resumo:
Lung cancer is one of the most common types of cancer and has the highest mortality rate. Patient survival is highly correlated with early detection. Computed Tomography technology services the early detection of lung cancer tremendously by offering aminimally invasive medical diagnostic tool. However, the large amount of data per examination makes the interpretation difficult. This leads to omission of nodules by human radiologist. This thesis presents a development of a computer-aided diagnosis system (CADe) tool for the detection of lung nodules in Computed Tomography study. The system, called LCD-OpenPACS (Lung Cancer Detection - OpenPACS) should be integrated into the OpenPACS system and have all the requirements for use in the workflow of health facilities belonging to the SUS (Brazilian health system). The LCD-OpenPACS made use of image processing techniques (Region Growing and Watershed), feature extraction (Histogram of Gradient Oriented), dimensionality reduction (Principal Component Analysis) and classifier (Support Vector Machine). System was tested on 220 cases, totaling 296 pulmonary nodules, with sensitivity of 94.4% and 7.04 false positives per case. The total time for processing was approximately 10 minutes per case. The system has detected pulmonary nodules (solitary, juxtavascular, ground-glass opacity and juxtapleural) between 3 mm and 30 mm.
Resumo:
Objective
Pedestrian detection under video surveillance systems has always been a hot topic in computer vision research. These systems are widely used in train stations, airports, large commercial plazas, and other public places. However, pedestrian detection remains difficult because of complex backgrounds. Given its development in recent years, the visual attention mechanism has attracted increasing attention in object detection and tracking research, and previous studies have achieved substantial progress and breakthroughs. We propose a novel pedestrian detection method based on the semantic features under the visual attention mechanism.
Method
The proposed semantic feature-based visual attention model is a spatial-temporal model that consists of two parts: the static visual attention model and the motion visual attention model. The static visual attention model in the spatial domain is constructed by combining bottom-up with top-down attention guidance. Based on the characteristics of pedestrians, the bottom-up visual attention model of Itti is improved by intensifying the orientation vectors of elementary visual features to make the visual saliency map suitable for pedestrian detection. In terms of pedestrian attributes, skin color is selected as a semantic feature for pedestrian detection. The regional and Gaussian models are adopted to construct the skin color model. Skin feature-based visual attention guidance is then proposed to complete the top-down process. The bottom-up and top-down visual attentions are linearly combined using the proper weights obtained from experiments to construct the static visual attention model in the spatial domain. The spatial-temporal visual attention model is then constructed via the motion features in the temporal domain. Based on the static visual attention model in the spatial domain, the frame difference method is combined with optical flowing to detect motion vectors. Filtering is applied to process the field of motion vectors. The saliency of motion vectors can be evaluated via motion entropy to make the selected motion feature more suitable for the spatial-temporal visual attention model.
Result
Standard datasets and practical videos are selected for the experiments. The experiments are performed on a MATLAB R2012a platform. The experimental results show that our spatial-temporal visual attention model demonstrates favorable robustness under various scenes, including indoor train station surveillance videos and outdoor scenes with swaying leaves. Our proposed model outperforms the visual attention model of Itti, the graph-based visual saliency model, the phase spectrum of quaternion Fourier transform model, and the motion channel model of Liu in terms of pedestrian detection. The proposed model achieves a 93% accuracy rate on the test video.
Conclusion
This paper proposes a novel pedestrian method based on the visual attention mechanism. A spatial-temporal visual attention model that uses low-level and semantic features is proposed to calculate the saliency map. Based on this model, the pedestrian targets can be detected through focus of attention shifts. The experimental results verify the effectiveness of the proposed attention model for detecting pedestrians.
Resumo:
Virtual topology operations have been utilized to generate an analysis topology definition suitable for downstream mesh generation. Detailed descriptions are provided for virtual topology merge and split operations for all topological entities. Current virtual topology technology is extended to allow the virtual partitioning of volume cells and the topological queries required to carry out each operation are provided. Virtual representations are robustly linked to the underlying geometric definition through an analysis topology. The analysis topology and all associated virtual and topological dependencies are automatically updated after each virtual operation, providing the link to the underlying CAD geometry. Therefore, a valid description of the analysis topology, including relative orientations, is maintained. This enables downstream operations, such as the merging or partitioning of virtual entities, and interrogations, such as determining if a specific meshing strategy can be applied to the virtual volume cells, to be performed on the analysis topology description. As the virtual representation is a non-manifold description of the sub-divided domain the interfaces between cells are recorded automatically. This enables the advantages of non-manifold modelling to be exploited within the manifold modelling environment of a major commercial CAD system, without any adaptation of the underlying CAD model. A hierarchical virtual structure is maintained where virtual entities are merged or partitioned. This has a major benefit over existing solutions as the virtual dependencies are stored in an open and accessible manner, providing the analyst with the freedom to create, modify and edit the analysis topology in any preferred sequence, whilst the original CAD geometry is not disturbed. Robust definitions of the topological and virtual dependencies enable the same virtual topology definitions to be accessed, interrogated and manipulated within multiple different CAD packages and linked to the underlying geometry.
Resumo:
This papers examines the use of trajectory distance measures and clustering techniques to define normal
and abnormal trajectories in the context of pedestrian tracking in public spaces. In order to detect abnormal
trajectories, what is meant by a normal trajectory in a given scene is firstly defined. Then every trajectory
that deviates from this normality is classified as abnormal. By combining Dynamic Time Warping and a
modified K-Means algorithms for arbitrary-length data series, we have developed an algorithm for trajectory
clustering and abnormality detection. The final system performs with an overall accuracy of 83% and 75%
when tested in two different standard datasets.
Resumo:
Part 8: Business Strategies Alignment
Resumo:
A method for estimating the dimensions of non-delimited free parking areas by using a static surveillance camera is proposed. The proposed method is specially designed to tackle the main challenges of urban scenarios (multiple moving objects, outdoor illumination conditions and occlusions between vehicles) with no training. The core of this work is the temporal analysis of the video frames to detect the occupancy variation of the parking areas. Two techniques are combined: background subtraction using a mixture of Gaussians to detect and track vehicles and the creation of a transience map to detect the parking and leaving of vehicles. The authors demonstrate that the proposed method yields satisfactory estimates on three real scenarios while being a low computational cost solution that can be applied in any kind of parking area covered by a single camera.
Resumo:
The first mechanical Automaton concept was found in a Chinese text written in the 3rd century BC, while Computer Vision was born in the late 1960s. Therefore, visual perception applied to machines (i.e. the Machine Vision) is a young and exciting alliance. When robots came in, the new field of Robotic Vision was born, and these terms began to be erroneously interchanged. In short, we can say that Machine Vision is an engineering domain, which concern the industrial use of Vision. The Robotic Vision, instead, is a research field that tries to incorporate robotics aspects in computer vision algorithms. Visual Servoing, for example, is one of the problems that cannot be solved by computer vision only. Accordingly, a large part of this work deals with boosting popular Computer Vision techniques by exploiting robotics: e.g. the use of kinematics to localize a vision sensor, mounted as the robot end-effector. The remainder of this work is dedicated to the counterparty, i.e. the use of computer vision to solve real robotic problems like grasping objects or navigate avoiding obstacles. Will be presented a brief survey about mapping data structures most widely used in robotics along with SkiMap, a novel sparse data structure created both for robotic mapping and as a general purpose 3D spatial index. Thus, several approaches to implement Object Detection and Manipulation, by exploiting the aforementioned mapping strategies, will be proposed, along with a completely new Machine Teaching facility in order to simply the training procedure of modern Deep Learning networks.
Resumo:
The research project aims to improve the Design for Additive Manufacturing of metal components. Firstly, the scenario of Additive Manufacturing is depicted, describing its role in Industry 4.0 and in particular focusing on Metal Additive Manufacturing technologies and the Automotive sector applications. Secondly, the state of the art in Design for Additive Manufacturing is described, contextualizing the methodologies, and classifying guidelines, rules, and approaches. The key phases of product design and process design to achieve lightweight functional designs and reliable processes are deepened together with the Computer-Aided Technologies to support the approaches implementation. Therefore, a general Design for Additive Manufacturing workflow based on product and process optimization has been systematically defined. From the analysis of the state of the art, the use of a holistic approach has been considered fundamental and thus the use of integrated product-process design platforms has been evaluated as a key element for its development. Indeed, a computer-based methodology exploiting integrated tools and numerical simulations to drive the product and process optimization has been proposed. A validation of CAD platform-based approaches has been performed, as well as potentials offered by integrated tools have been evaluated. Concerning product optimization, systematic approaches to integrate topology optimization in the design have been proposed and validated through product optimization of an automotive case study. Concerning process optimization, the use of process simulation techniques to prevent manufacturing flaws related to the high thermal gradients of metal processes is developed, providing case studies to validate results compared to experimental data, and application to process optimization of an automotive case study. Finally, an example of the product and process design through the proposed simulation-driven integrated approach is provided to prove the method's suitability for effective redesigns of Additive Manufacturing based high-performance metal products. The results are then outlined, and further developments are discussed.
Resumo:
This study proposed to evaluate the mandibular biomechanics in the posterior dentition based on experimental and computational analyses. The analyses were performed on a model of human mandible, which was modeled by epoxy resin for photoelastic analysis and by computer-aided design for finite element analysis. To standardize the evaluation, specific areas were determined at the lateral surface of mandibular body. The photoelastic analysis was configured through a vertical load on the first upper molar and fixed support at the ramus of mandible. The same configuration was used in the computer simulation. Force magnitudes of 50, 100, 150, and 200 N were applied to evaluate the bone stress. The stress results presented similar distribution in both analyses, with the more intense stress being at retromolar area and oblique line and alveolar process at molar level. This study presented the similarity of results in the experimental and computational analyses and, thus, showed the high importance of morphology biomechanical characterization at posterior dentition.
Resumo:
Natural products have widespread biological activities, including inhibition of mitochondrial enzyme systems. Some of these activities, for example cytotoxicity, may be the result of alteration of cellular bioenergetics. Based on previous computer-aided drug design (CADD) studies and considering reported data on structure-activity relationships (SAR), an assumption regarding the mechanism of action of natural products against parasitic infections involves the NADH-oxidase inhibition. In this study, chemometric tools, such as: Principal Component Analysis (PCA), Consensus PCA (CPCA), and partial least squares regression (PLS), were applied to a set of forty natural compounds, acting as NADH-oxidase inhibitors. The calculations were performed using the VolSurf+ program. The formalisms employed generated good exploratory and predictive results. The independent variables or descriptors having a hydrophobic profile were strongly correlated to the biological data.
Resumo:
This paper describes the modeling of a weed infestation risk inference system that implements a collaborative inference scheme based on rules extracted from two Bayesian network classifiers. The first Bayesian classifier infers a categorical variable value for the weed-crop competitiveness using as input categorical variables for the total density of weeds and corresponding proportions of narrow and broad-leaved weeds. The inferred categorical variable values for the weed-crop competitiveness along with three other categorical variables extracted from estimated maps for the weed seed production and weed coverage are then used as input for a second Bayesian network classifier to infer categorical variables values for the risk of infestation. Weed biomass and yield loss data samples are used to learn the probability relationship among the nodes of the first and second Bayesian classifiers in a supervised fashion, respectively. For comparison purposes, two types of Bayesian network structures are considered, namely an expert-based Bayesian classifier and a naive Bayes classifier. The inference system focused on the knowledge interpretation by translating a Bayesian classifier into a set of classification rules. The results obtained for the risk inference in a corn-crop field are presented and discussed. (C) 2009 Elsevier Ltd. All rights reserved.