747 resultados para Combinatorial mathematics
Resumo:
Item Response Theory, IRT, is a valuable methodology for analyzing the quality of the instruments utilized in assessment of academic achievement. This article presents an implementation of the mentioned theory, particularly of the Rasch model, in order to calibrate items and the instrument used in the classification test for the Basic Mathematics subject at Universidad Jorge Tadeo Lozano. 509 responses chains of students, obtained in the june 2011 application, were analyzed with a set of 45 items, through eight case studies that are showing progressive steps of calibration. Criteria of validity of items and of whole instrument were defined and utilized, to select groups of responses chains and items that were finally used in the determination of parameters which then allowed the classification of assessed students by the test.
Resumo:
The objective of the study is to determine the psychometric properties of the Epistemological Beliefs Questionnaire on Mathematics. 171 Secondary School Mathematics Teachers of the Central Region of Cuba participated. The results show acceptable internal consistency. The factorial structure of the scale revealed three major factors, consistent with the Model of the Three Constructs: beliefs about knowledge, about learning and teaching. Irregular levels in the development of the epistemological belief system about mathematics of these teachers were shown, with a tendency among naivety and sophistication poles. In conclusion, the questionnaire is useful for evaluating teacher’s beliefs about mathematics.
Resumo:
We are discussing certain combinatorial and counting problems related to quadratic algebras. First we give examples which confirm the Anick conjecture on the minimal Hilbert series for algebras given by $n$ generators and $\frac {n(n-1)}{2}$ relations for $n \leq 7$. Then we investigate combinatorial structure of colored graph associated to relations of RIT algebra. Precise descriptions of graphs (maps) corresponding to algebras with maximal Hilbert series are given in certain cases. As a consequence it turns out, for example, that RIT algebra may have a maximal Hilbert series only if components of the graph associated to each color are pairwise 2-isomorphic.
Resumo:
We define a category of quasi-coherent sheaves of topological spaces on projective toric varieties and prove a splitting result for its algebraic K-theory, generalising earlier results for projective spaces. The splitting is expressed in terms of the number of interior lattice points of dilations of a polytope associated to the variety. The proof uses combinatorial and geometrical results on polytopal complexes. The same methods also give an elementary explicit calculation of the cohomology groups of a projective toric variety over any commutative ring.