354 resultados para Chlamydia Trachomatis


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Host defense to intracellular pathogens depends upon both innate and adaptive cell-mediated immune responses. Polymorphonuclear neutrophil leukocytes which belong to the innate immune system are the first cells that are recruited massively within hours of microbial infection. Neutrophils are the main players in the killing of microorganisms and recently new methods of killing including nets formation have been described. Neutrophils mediate tissue damage at infected sites. By promoting tissue injury neutrophils contribute to the initiation of inflammation, which is now recognized as an essential step in launching immunity. The importance of neutrophils as decision shaper in the development of an immune response is only emerging as they have long been considered by immunologists as short lived, non-dividing cells, of poor interest. Now, neutrophils are emerging as key components of the inflammatory response, and are shown to have immunoregulatory roles in microbial infections. In addition, neutrophils were also reported to contribute to the recruitment and activation of antigen presenting cells. Thus early interactions between neutrophils and surrounding cells may influence the development/resolution of both inflammatory lesion and pathogen-specific immune response. The impact of neutrophils on cells present at the site of infection are only beginning to be studied and deserves more attention.In this e-book the reader will find updated information about the role of neutrophils in the pathogenesis of 1) bacterial diseases including sepsis, mycobacteria and Chlamydia infections, and of 2) parasitic diseases including leishmaniasis and toxoplasmosis. The role of neutrophils in the protection against microorganisms has largely been underestimated and, until recently, their role was mostly thought to limited to a "kill and die" response. New neutrophil mode of killing, such as their release of extracellular traps to kill extracellular bacterial pathogens, together with several microbial strategies designed to escape NETs are presented in Chapter 1. We will emphasize standard and advanced light microscopy techniques that allowed major advances in the understanding of neutrophil biology, through the visualization of the interaction of selected pathogens with neutrophils in living animals (Chapter 2).The aim of this e-book is to provide an overview of the recent advances made in the field of neutrophil biology. It will provide a basis for understanding future development that will occur in this area, and provide the reader with a short overview of some of the exciting new directions in which neutrophil research is moving.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The etiology remains unknown in many cases of bovine abortion in Switzerland. Bacteria of the Chlamydiales order are known abortive agents, therefore cases of bovine abortion from three representative regions of Switzerland were investigated in this study. Particularly Chlamydiaceae as well as the Chlamydia-like organisms Waddlia and Parachlamydia were of interest, especially because of their possible zoonotic potential. Placenta samples (n=343) were tested for these bacteria by different PCR-methods, immunohistochemistry and serology for Chlamydia abortus. Additionally an attempt for the isolation of Waddlia and Parachlamydia was made by co-cultivation in amoebae. In 67.3% of the 343 cases a necrotizing and/or purulent placentitis was found histologically. By real-time PCR, 0.9% (3/343) of the cases were positive for Waddlia, 13.4% (46/343) positive for Parachlamydia and 14.6% (50/343) positive or questionable positive for Chlamydiaceae. Of these samples, confirmation by immunohistochemistry was possible in 2/3 cases for Waddlia, 25/46 for Parachlamydia and 4/50 for Chlamydiaceae. Of the 50 cases positive or questionable positive for Chlamydiaceae, species-identification by ArrayTube Microarray or 16S rRNA PCR resulted in 41 cases positive for C. abortus whereas the presence of Chlamydia suis was confirmed in four and Chlamydia pecorum in one case. This study brought evidence for the importance of different members of Chlamydiales in different regions of Switzerland although Waddlia is not occurring in a high prevalence. On the other hand mixed infections with different Chlamydiales as well as with other abortigenic agents could be found.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pathogenicity of Chlamydia and Chlamydia-related bacteria could be partially mediated by an enhanced activation of the innate immune response. The study of this host pathogen interaction has proved challenging due to the restricted in vitro growth of these strict intracellular bacteria and the lack of genetic tools to manipulate their genomes. Despite these difficulties, the interactions of Chlamydiales with the innate immune cells and their effectors have been studied thoroughly. This review aims to point out the role of pattern recognition receptors and signal molecules (cytokines, reactive oxygen species) of the innate immune response in the pathogenesis of chlamydial infection. Besides inducing clearance of the bacteria, some of these effectors may be used by the Chlamydia to establish chronic infections or to spread. Thus, the induced innate immune response seems to be variable depending on the species and/or the serovar, making the pattern more complex. It remains crucial to determine the common players of the innate immune response in order to help define new treatment strategies and to develop effective vaccines. The excellent growth in phagocytic cells of some Chlamydia-related organisms such as Waddlia chondrophila supports their use as model organisms to study conserved features important for interactions between the innate immunity and Chlamydia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Waddlia chondrophila is considered as an emerging human pathogen likely involved in miscarriage and lower respiratory tract infections. Given the low sensitivity of cell culture to recover such an obligate intracellular bacteria, molecular-based diagnostic approaches are warranted. We thus developed a real-time PCR that amplifies Waddlia chondrophila DNA. Specific primers and probe were selected to target the 16S rRNA gene. The PCR specifically amplified W. chondrophila but did not amplify other related-bacteria such as Parachlamydia acanthamoebae, Simkania negevensis and Chlamydia pneumoniae. The PCR exhibited a good intra-run and inter-run reproducibility and a sensitivity of less than ten copies of the positive control. This real-time PCR was then applied to 32 nasopharyngeal aspirates taken from children with bronchiolitis not due to respiratory syncytial virus (RSV). Three samples revealed to be Waddlia positive, suggesting a possible role of this Chlamydia-related bacteria in this setting.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Parachlamydia acanthamoebae is a Chlamydia-related organism whose pathogenic role in pneumonia is supported by serological and molecular clinical studies and an experimental mouse model of lung infection. Toll-like receptors (TLRs) play a seminal role in sensing microbial products and initiating innate immune responses. The aim of this study was to investigate the roles of MyD88, TLR2, and TLR4 in the interaction of Parachlamydia with macrophages. Here, we showed that Parachlamydia entered bone-marrow derived macrophages (BMDMs) in a TLR-independent manner but did not multiply intracellularly. Interestingly, compared to live bacteria, heat-inactivated Parachlamydia induced the production of substantial amounts of tumor necrosis factor alpha (TNF), interleukin-6 (IL-6), and IL-12p40 by BMDMs and of TNF and IL-6 by peritoneal macrophages as well as RAW 264.7 and J774 macrophage cell lines. Cytokine production by BMDMs, which was partially inhibited upon trypsin treatment of Parachlamydia, was dependent on MyD88, TLR4, and, to a lesser extent, TLR2. Finally, MyD88(-/-), TLR4(-/-), and TLR2(-/-) mice were as resistant as wild-type mice to lung infection following the intratracheal instillation of Parachlamydia. Thus, in contrast to Chlamydia pneumoniae, Parachlamydia acanthamoebae weakly stimulates macrophages, potentially compensating for its low replication capacity in macrophages by escaping the innate immune surveillance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Corneal samples of cats with and without corneal diseases were screened with a pan-Chlamydiales PCR and specific PCRs for Parachlamydia, Protochlamydia, Chlamydophila felis, Acanthamoeba and feline herpesviruses (FHV-1). Several corneal samples tested positive for Parachlamydia and related Chlamydiales, indicating cat exposure to these intracellular bacteria.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Waddlia chondrophila is an obligate intracellular bacterium of the Chlamydiales order. W. chondrophila has been isolated twice from aborted bovine foetuses and a serological study supported the abortigenic role of W. chondrophila in bovine species. Recently, we observed a strong association between the presence of anti-Waddlia antibodies and human miscarriage. To further investigate the pathogenic potential of W. chondrophila in humans, we studied the entry and the multiplication of this Chlamydia-like organism in human macrophages. Confocal and electron microscopy confirmed that W. chondrophila is able to enter human monocyte-derived macrophages. Moreover, W. chondrophila multiplied readily within macrophages. The proportion of infected macrophages increased from 13% at day 0 to 96% at day 4, and the mean number of bacteria per macrophage increased by 3logs in 24h. Intracellular growth of W. chondrophila was associated with a significant cytopathic effect. Thus, W. chondrophila may enter and grow rapidly within human macrophages, inducing lysis of infected cells. Since macrophages are one of the major components of the innate immune response, these findings indirectly suggest the possible human pathogenicity of W. chondrophila.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Growing evidence suggests that a novel member of the Chlamydiales order, Waddlia chondrophila, is a potential agent of miscarriage in humans and abortion in ruminants. Due to the lack of genetic tools to manipulate chlamydia, genomic analysis is proving to be the most incisive tool in stimulating investigations into the biology of these obligate intracellular bacteria. 454/Roche and Solexa/Illumina technologies were thus used to sequence and assemble de novo the full genome of the first representative of the Waddliaceae family, W. chondrophila. The bacteria possesses a 2'116'312 bp chromosome and a 15'593 bp low-copy number plasmid that might integrate into the bacterial chromosome. The Waddlia genome displays numerous repeated sequences indicating different genome dynamics from classical chlamydia which almost completely lack repetitive elements. Moreover, W. chondrophila exhibits many virulence factors also present in classical chlamydia, including a functional type III secretion system, but also a large complement of specific factors for resistance to host or environmental stresses. Large families of outer membrane proteins were identified indicating that these highly immunogenic proteins are not Chlamydiaceae specific and might have been present in their last common ancestor. Enhanced metabolic capability for the synthesis of nucleotides, amino acids, lipids and other co-factors suggests that the common ancestor of the modern Chlamydiales may have been less dependent on their eukaryotic host. The fine-detailed analysis of biosynthetic pathways brings us closer to possibly developing a synthetic medium to grow W. chondrophila, a critical step in the development of genetic tools. As a whole, the availability of the W. chondrophila genome opens new possibilities in Chlamydiales research, providing new insights into the evolution of members of the order Chlamydiales and the biology of the Waddliaceae.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

During the genomic era, a large amount of whole-genome sequences accumulated, which identified many hypothetical proteins of unknown function. Rapidly, functional genomics, which is the research domain that assign a function to a given gene product, has thus been developed. Functional genomics of intracellular pathogenic bacteria exhibit specific peculiarities due to the fastidious growth of most of these intracellular micro-organisms, due to the close interaction with the host cell, due to the risk of contamination of experiments with host cell proteins and, for some strict intracellular bacteria such as Chlamydia, due to the absence of simple genetic system to manipulate the bacterial genome. To identify virulence factors of intracellular pathogenic bacteria, functional genomics often rely on bioinformatic analyses compared with model organisms such as Escherichia coli and Bacillus subtilis. The use of heterologous expression is another common approach. Given the intracellular lifestyle and the many effectors that are used by the intracellular bacteria to corrupt host cell functions, functional genomics is also often targeting the identification of new effectors such as those of the T4SS of Brucella and Legionella.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Intracellular bacteria are common causes of community-acquired pneumonia that grow poorly or not at all on standard culture media and do not respond to beta-lactam antibiotic therapy. Apart from well-established agents of pneumonia such as Legionella pneumophila, Mycoplasma pneumoniae, Chlamydia pneumoniae, Chlamydia psittaci and Coxiella burnetii, some new emerging pathogens have recently been recognized, mainly Parachlamydia acanthamoebae and Simkania negevensis, two Chlamydia-related bacteria. Most of them are causes of benign and self-limited infections. However, they may cause severe pneumonia in some cases (i.e., Legionnaires' disease) and they may cause outbreaks representing a public health problem deserving prompt recognition and appropriate therapy. Although extrapulmonary manifestations are often present, no clinical features allow them to be distinguished from classical bacterial agents of pneumonia such as Streptococcus pneumoniae. Thus, specific molecular diagnostic tools are very helpful for early recognition of the offending bacteria, whereas serology often only allows retrospective or late diagnosis. Macrolides remain the best empirical treatment of intracellular respiratory pathogens, although some observational studies suggest that quinolones may be superior for the treatment of legionellosis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Despite using modern microbiological diagnostic approaches, the aetiological agents of pneumonia remain unidentified in about 50% of cases. Some bacteria that grow poorly or not at all in axenic media used in routine clinical bacteriology laboratory but which can develop inside amoebae may be the agents of these lower respiratory tract infections (RTIs) of unexplained aetiology. Such amoebae-resisting bacteria, which coevolved with amoebae to resist their microbicidal machinery, may have developed virulence traits that help them survive within human macrophages, i.e. the first line of innate immune defence in the lung. We review here the current evidence for the emerging pathogenic role of various amoebae-resisting microorganisms as agents of RTIs in humans. Specifically, we discuss the emerging pathogenic roles of Legionella-like amoebal pathogens, novel Chlamydiae (Parachlamydia acanthamoebae, Simkania negevensis), waterborne mycobacteria and Bradyrhizobiaceae (Bosea and Afipia spp.).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chlamydia and Chlamydia-related bacteria are known to infect various organisms and may cause a wide range of diseases, especially in ruminants. To gain insight into the prevalence of these bacteria in the ruminant environment, we applied a pan-Chlamydiales PCR followed by sequencing to 72 ruminant environmental samples from water, feed bunks and floors. Chlamydiales from four family-level lineages were detected indicating a high biodiversity of Chlamydiales in ruminant farms. Parachlamydiaceae were detected in all three types of environmental samples and was the most abundant family-level taxon (60%). In contrast, only one bacterium from each of the following family-level lineages was identified: Chlamydiaceae, Criblamydiaceae and Simkaniaceae. The observed high prevalence of Parachlamydiaceae in water samples may suggest water as the main source of contamination for ruminants as well as their environment due to spoilage. The absence of reported infections in the investigated ruminant farms might indicate that either detected Chlamydiales are of reduced pathogenicity or infective doses have not been reached.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chlamydiales are obligate intracellular bacteria including some important pathogens causing trachoma, genital tract infections and pneumonia, among others. They share an atypical division mechanism, which is independent of an FtsZ homologue. However, they divide by binary fission, in a process inhibited by penicillin derivatives, causing the formation of an aberrant form of the bacteria, which is able to survive in the presence of the antibiotic. The paradox of penicillin sensitivity of chlamydial cells in the absence of detectable peptidoglycan (PG) was dubbed the chlamydial anomaly, since no PG modified by enzymes (Pbps) that are the usual target of penicillin could be detected in Chlamydiales. We review here the recent advances in this field with the first direct and indirect evidences of PG-like material in both Chlamydiaceae and Chlamydia-related bacteria. Moreover, PG biosynthesis is required for proper localization of the newly described septal proteins RodZ and NlpD. Taken together, these new results set the stage for a better understanding of the role of PG and septal proteins in the division mechanism of Chlamydiales and illuminate the long-standing chlamydial anomaly. Moreover, understanding the chlamydial division mechanism is critical for the development of new antibiotics for the treatment of chlamydial chronic infections.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Members of the Chlamydiales order are major bacterial pathogens that divide at mid-cell, without a sequence homologue of the FtsZ cytokinetic tubulin and without a classical peptidoglycan cell wall. Moreover, the spatiotemporal mechanisms directing constriction in Chlamydia are not known. Here we show that the MreB actin homologue and its conserved regulator RodZ localize to the division furrow in Waddlia chondrophila, a member of the Chlamydiales order implicated in human miscarriage. RodZ is recruited to the septal site earlier than MreB and in a manner that depends on biosynthesis of the peptidoglycan precursor lipid II by the MurA enzyme. By contrast, crosslinking of lipid II peptides by the Pbp3 transpeptidase disperses RodZ from the septum. Altogether, these findings provide a cytological framework for understanding chlamydial cytokinesis driven by septal cell wall synthesis.