922 resultados para Cellular infiltration
Resumo:
During cell proliferation, growth must occur to maintain homeostatic cell size. Here we show that E2F1 is capable of inducing growth by regulating mTORC1 activity. The activation of cell growth and mTORC1 by E2F1 is dependent on both E2F1's ability to bind DNA and to regulate gene transcription, demonstrating that a gene induction expression program is required in this process. Unlike E2F1, E2F3 is unable to activate mTORC1, suggesting that growth activity could be restricted to individual E2F members. The effect of E2F1 on the activation of mTORC1 does not depend on Akt. Furthermore, over-expression of TSC2 does not interfere with the effect of E2F1, indicating that the E2F1-induced signal pathway can compensate for the inhibitory effect of TSC2 on Rheb. Immunolocalization studies demonstrate that E2F1 induces the translocation of mTORC1 to the late endosome vesicles, in a mechanism dependent of leucine. E2F1 and leucine, or insulin, together affect the activation of S6K stronger than alone suggesting that they are complementary in activating the signal pathway. From these studies, E2F1 emerges as a key protein that integrates cell division and growth, both of which are essential for cell proliferation.
Resumo:
Two hybrid compounds comprising an antimetastatic ruthenium-arene fragment tethered to an indazole-3-carboxylic acid derivative that inhibits aerobic glycolysis in cancer cells have been prepared and evaluated in a variety of cancer cell lines, including highly relevant human glioblastoma cells, with an apparent synergistic action between the two components observed.
Resumo:
Algunes nanotècniques recents permeten la manipulació de biomolècules i cèl·lules en escala nanomètrica amb la mesura simultània de la força aplicada amb resolució de piconewtons. Aquestes escales de desplaçament i força, i la possibilitat de treballar en medi líquid, fan que siguin eines molt útils per a l'estudi de les propietats mecàniques de molècules i cèl·lules individuals en condicions fisiològiques. Entre les tècniques més utilitzades es troben el microscopi de força atòmica, les trampes de làser i les microesferes magnètiques. En aquest treball es descriuen els principis de funcionament d'aquestes tècniques en aplicacions biològiques i, en particular, en l'estudi de la mecànica molecular i cel·lular.
Resumo:
A large percentage of healthy individuals (50-90%) is chronically infected with Cytomegalovirus (CMV). Over the past few years, several techniques were developed in order to monitor CMV-specific T-cell responses. In addition to the identification of antigen-specific T cells with peptide-loaded MHC complexes, most of the current strategies to identify CMV-specific T cells are centered on the assessment of the functions of memory T cells including their ability to mediate effector function, to proliferate or to secrete cytokines following antigen-specific stimulation. The investigation of these functions has allowed the characterization of the CMV-specific T-cell responses that are present during different phases of the infection. Furthermore, it has also been shown that the combination of virus-specific CD4 and CD8 T-cell responses are critical components of the immune response in the control of virus replication.
Resumo:
The timely regulation of gonadotropin-releasing hormone (GnRH) secretion requires a GABAergic signal. We hypothesized that GEC1, a protein promoting the transport of GABA(A) receptors, could represent a circadian effector in GnRH neurons. First, we demonstrated that gec1 is co-expressed with the GABA(A) receptor in hypothalamic rat GnRH neurons. We also confirmed that the clock genes per1, cry1 and bmal1 are expressed and oscillate in GnRH secreting GnV-3 cells. Then we could show that gec1 is expressed in GnV-3 cells, and oscillates in a manner temporally related to the oscillations of the clock transcription factors. Furthermore, we could demonstrate that these oscillations depend upon Per1 expression. Finally, we observed that GABA(A) receptor levels at the GnV-3 cell membrane are timely modulated following serum shock. Together, these data demonstrate that gec1 expression is dependent upon the circadian clock machinery in GnRH-expressing neurons, and suggest for the first time that the level of GABA(A) receptor at the cell membrane may be under timely regulation. Overall, they provide a potential mechanism for the circadian regulation of GnRH secretion by GABA, and may also be relevant to the general understanding of circadian rhythms.
Resumo:
Background: The hepatitis C virus (HCV) NS3-4A protease is not only an essential component of the viral replication complex and a prime target for antiviral intervention but also a key player in the persistence and pathogenesis of HCV. It cleaves and thereby inactivates two crucial adaptor proteins in viral RNA sensing and innate immunity (MAVS and TRIF) as well as a phosphatase involved in growth factor signaling (TC-PTP). The aim of this study was to identify novel cellular substrates of the NS3-4A protease and to investigate their role in the life cycle and pathogenesis of HCV. Methods: Cell lines inducibly expressing the NS3-4A protease were analyzed in basal as well as interferon- α -stimulated states by stable isotopic labeling using amino acids in cell culture (SILAC) coupled with protein separation and mass spectrometry. Candidates fulfilling strin- gent criteria for potential substrates or products of the NS3-4A protease were further investigated in different experimental sys- tems as well as in liver biopsies from patients with chronic hep- atitis C. Results: SILAC coupled with protein separation and mass spectrometry yielded > 5000 proteins of which 21 can- didates were selected for further analyses. These allowed us to identify GPx8, a membrane-associated peroxidase involved in disulfide bond formation in the endoplasmic reticulum, as a novel cellular substrate of the HCV NS3-4A protease. Cleavage occurs at cysteine in position 11, removing the cytosolic tip of GPx8, and was observed in different experimental systems as well as in liver biopsies from patients with chronic hepatitis C. Further functional studies, involving overexpression and RNA silencing, revealed that GPx8 is a proviral factor involved in viral particle production but not in HCV entry or RNA replica- tion. Conclusions: GPx8 is a proviral host factor cleaved by the HCV NS3-4A protease. Studies investigating the consequences of cleavage for GPx8 function are underway. The identification of novel cellular substrates of the HCV NS3-4A protease should yield new insights into the HCV life cycle and the pathogenesis of hepatitis C and may reveal novel angles for therapeutic inter- vention.
Resumo:
It has been recently shown (Seddiki, N., B. Santner-Nanan, J. Martinson, J. Zaunders, S. Sasson, A. Landay, M. Solomon, W. Selby, S.I. Alexander, R. Nanan, et al. 2006. J. Exp. Med. 203:1693-1700.) that the expression of interleukin (IL) 7 receptor (R) alpha discriminates between two distinct CD4 T cell populations, both characterized by the expression of CD25, i.e. CD4 regulatory T (T reg) cells and activated CD4 T cells. T reg cells express low levels of IL-7Ralpha, whereas activated CD4 T cells are characterized by the expression of IL-7Ralpha(high). We have investigated the distribution of these two CD4 T cell populations in 36 subjects after liver and kidney transplantation and in 45 healthy subjects. According to a previous study (Demirkiran, A., A. Kok, J. Kwekkeboom, H.J. Metselaar, H.W. Tilanus, and L.J. van der Laan. 2005. Transplant. Proc. 37:1194-1196.), we observed that the T reg CD25(+)CD45RO(+)IL-7Ralpha(low) cell population was reduced in transplant recipients (P < 0.00001). Interestingly, the CD4(+)CD25(+)CD45RO(+)IL-7Ralpha(high) cell population was significantly increased in stable transplant recipients compared with healthy subjects (P < 0.00001), and the expansion of this cell population was even greater in patients with documented humoral chronic rejection compared with stable transplant recipients (P < 0.0001). The expanded CD4(+)CD25(+)CD45RO(+)IL-7Ralpha(high) cell population contained allospecific CD4 T cells and secreted effector cytokines such as tumor necrosis factor alpha and interferon gamma, thus potentially contributing to the mechanisms of chronic rejection. More importantly, CD4(+)IL-7Ralpha(+)and CD25(+)IL-7Ralpha(+) cells were part of the T cell population infiltrating the allograft of patients with a documented diagnosis of chronic humoral rejection. These results indicate that the CD4(+)CD25(+)IL-7Ralpha(+) cell population may represent a valuable, sensitive, and specific marker to monitor allospecific CD4 T cell responses both in blood and in tissues after organ transplantation.
Resumo:
How the apical-basal axis of polarity is established in embryogenesis is still a mystery in plant development. This axis appeared specifically compromised by mutations in the Arabidopsis GNOM gene. Surprisingly, GNOM encodes an ARF guanine-nucleotide exchange factor (ARF-GEF) that regulates the formation of vesicles in membrane trafficking. In-depth functional analysis of GNOM and its closest relative, GNOM-LIKE 1 (GNL1), has provided a mechanistic explanation for the development-specific role of a seemingly mundane trafficking regulator. The current model proposes that GNOM is specifically involved in the endosomal recycling of the auxin-efflux carrier PIN1 to the basal plasma membrane in provascular cells, which in turn is required for the accumulation of the plant hormone auxin at the future root pole through polar auxin transport. Thus, the analysis of GNOM highlights the importance of cell-biological processes for a mechanistic understanding of development.
Resumo:
We have investigated hysteresis and the return-point memory (RPM) property in deterministic cellular automata with avalanche dynamics. The RPM property reflects a partial ordering of metastable states, preserved by the dynamics. Recently, Sethna et al. [Phys. Rev. Lett. 70, 3347 (1993)] proved this behavior for a homogeneously driven system with static disorder. This Letter shows that the partial ordering and the RPM can be displayed as well by systems driven heterogeneously, as a result of its own evolution dynamics. In particular, we prove the RPM property for a deterministic 2D sandpile automaton driven at a central site.
Resumo:
Nodular fasciitis (NF) is a rapidly growing cellular mass composed of fibroblasts/myofibroblasts, usually localized in subcutaneous tissues, that typically undergoes fibrosis and almost never recurs. Desmoid tumours (DTs) are rare forms of fibroblastic/myofibroblastic growth that arise in deep soft tissues, display a propensity for local infiltration and recurrence, but fail to metastasize. Given that both entities are primarily fibroblastic/myofibroblastic lesions with overlapping histological features, their gene expression profiles were compared to identify differentially expressed genes that may provide not only potential diagnostic markers, but also clues as to the pathogenesis of each disorder. Differentially expressed transcripts (89 clones displaying increased expression in DTs and 246 clones displaying increased expression in NF) included genes encoding several receptor and non-receptor tyrosine kinases (EPHB3, PTPRF, GNAZ, SYK, LYN, EPHA4, BIRC3), transcription factors (TWIST1, PITX2, EYA2, OAS1, MITF, TCF20), and members of the Wnt signalling pathway (AXIN2, WISP1, SFRP). Remarkably, almost one-quarter of the differentially expressed genes encode proteins associated with inflammation and tissue remodelling, including members of the interferon (IFN), tumour necrosis factor (TNF), and transforming growth factor beta (TGF-beta) signalling pathways as well as metalloproteinases (MMP1, 9, 13, 23), urokinase plasminogen activator (PLAU), and cathepsins. The observations provide the first comparative molecular characterization of desmoid tumours and nodular fasciitis and suggest that selected tyrosine kinases, transcription factors, and members of the Wnt, TGF-beta, IFN, and TNF signalling pathways may be implicated in influencing and distinguishing their fate.
Resumo:
Soil infiltration is a key link of the natural water cycle process. Studies on soil permeability are conducive for water resources assessment and estimation, runoff regulation and management, soil erosion modeling, nonpoint and point source pollution of farmland, among other aspects. The unequal influence of rainfall duration, rainfall intensity, antecedent soil moisture, vegetation cover, vegetation type, and slope gradient on soil cumulative infiltration was studied under simulated rainfall and different underlying surfaces. We established a six factor-model of soil cumulative infiltration by the improved back propagation (BP)-based artificial neural network algorithm with a momentum term and self-adjusting learning rate. Compared to the multiple nonlinear regression method, the stability and accuracy of the improved BP algorithm was better. Based on the improved BP model, the sensitive index of these six factors on soil cumulative infiltration was investigated. Secondly, the grey relational analysis method was used to individually study grey correlations among these six factors and soil cumulative infiltration. The results of the two methods were very similar. Rainfall duration was the most influential factor, followed by vegetation cover, vegetation type, rainfall intensity and antecedent soil moisture. The effect of slope gradient on soil cumulative infiltration was not significant.
Resumo:
Chemical pollution is known to affect microbial community composition but it is poorly understood how toxic compounds influence physiology of single cells that may lay at the basis of loss of reproductive fitness. Here we analyze physiological disturbances of a variety of chemical pollutants at single cell level using the bacterium Pseudomonas fluorescens in an oligotrophic growth assay. As a proxy for physiological disturbance we measured changes in geometric mean ethidium bromide (EB) fluorescence intensities in subpopulations of live and dividing cells exposed or not exposed to different dosages of tetradecane, 4-chlorophenol, 2-chlorobiphenyl, naphthalene, benzene, mercury chloride, or water-dissolved oil fractions. Because ethidium bromide efflux is an energy-dependent process any disturbance in cellular energy generation is visible as an increased cytoplasmic fluorescence. Interestingly, all pollutants even at the lowest dosage of 1 nmol/mL culture produced significantly increased ethidium bromide fluorescence compared to nonexposed controls. Ethidium bromide fluorescence intensities increased upon pollutant exposure dosage up to a saturation level, and were weakly (r(2) = 0.3905) inversely correlated to the proportion of live cells at that time point in culture. Temporal increase in EB fluorescence of growing cells is indicative for toxic but reversible effects. Cells displaying high continued EB fluorescence levels experience constant and permanent damage, and no longer contribute to population growth. The procedure developed here using bacterial ethidium bromide efflux pump activity may be a useful complement to screen sublethal toxicity effects of chemicals.
Resumo:
Colorectal cancer (CRC) is a major cause of cancer mortality. Whereas some patients respond well to therapy, others do not, and thus more precise, individualized treatment strategies are needed. To that end, we analyzed gene expression profiles from 1,290 CRC tumors using consensus-based unsupervised clustering. The resultant clusters were then associated with therapeutic response data to the epidermal growth factor receptor-targeted drug cetuximab in 80 patients. The results of these studies define six clinically relevant CRC subtypes. Each subtype shares similarities to distinct cell types within the normal colon crypt and shows differing degrees of 'stemness' and Wnt signaling. Subtype-specific gene signatures are proposed to identify these subtypes. Three subtypes have markedly better disease-free survival (DFS) after surgical resection, suggesting these patients might be spared from the adverse effects of chemotherapy when they have localized disease. One of these three subtypes, identified by filamin A expression, does not respond to cetuximab but may respond to cMET receptor tyrosine kinase inhibitors in the metastatic setting. Two other subtypes, with poor and intermediate DFS, associate with improved response to the chemotherapy regimen FOLFIRI in adjuvant or metastatic settings. Development of clinically deployable assays for these subtypes and of subtype-specific therapies may contribute to more effective management of this challenging disease.