946 resultados para Cdna
Resumo:
The aims of this study were to characterize the recently cloned rat norepinephrine transporter (NET) in more detail and in particular to study possible species differences in its pharmacological properties compared with the human and bovine NETs. The study was carried out by measuring the uptake of [3H]norepinephrine in COS-7 cells expressing the NET after transient transfection with rat, human, or bovine NET cDNA. There were small but significant differences between the rat NET and the human or bovine NETs with respect to the affinities of sodium ions (greater for rat than for bovine) of the substrates norepinephrine, epinephrine, and 1-methyl-4-phenylpyridinium (greater for human than for rat), and of the inhibitor cocaine (greater for human and bovine than for rat), whereas the affinities of dopamine and of most inhibitors, including tricyclic antidepressants, showed no species differences. The fact that the affinities for some substrates, cocaine and sodium ions exhibited small but significant interspecies differences among the rat, human, and bovine NETs suggests that ligand recognition, the translocation process, and sodium ion dependence are influenced differentially by just a few amino acid exchanges in the primary sequences of the transporters. On the other hand, the lack of any major differences in the pharmacological properties of the rat, human, and bovine NETs in this study suggests that data obtained in previous studies on rat tissues and bovine cells can be extrapolated, in all except the most quantitative analyses, to the properties of the human NET.
Resumo:
We have investigated molecular mechanisms of the embryonic development of an ascidian, a primitive chordate which shares features of both invertebrates and vertebrates, with a view to identifying genes involved in development and metamorphosis, We isolated 12 partial cDNA sequences which were expressed in a stage-specific manner using differential display, We report here the isolation of a full-length cDNA sequence for one of these genes which was specifically expressed during the tailbud and larval stages of ascidian development, This cDNA, 1213 bp in length, is predicted to encode a protein of 337 amino acids containing four epidermal growth factor (EGF)-like repeats and three novel cysteine-rich repeats, Characterization of its spatial expression pattern by in situ hybridisation in late tailbud and larval embryos demonstrated strong expression localised throughout the papillae and anteriormost trunk and weaker expression in the epidermis of the remainder of the embryo, As recent evidence indicates that the signal for metamorphosis originates in the anterior trunk region, these results suggest that this gene may have a role in signalling the initiation of metamorphosis. (C) 1997 Wiley-Liss, Inc.
Resumo:
Pulp softening is one of the most remarkable changes during ripening of papaya (Carica papaya) fruit and it is a major cause for post-harvest losses. Although cell wall catabolism has a major influence on papaya fruit, quality information on the gene products involved in this process is limited. A full-length polygalacturonase cDNA (cpPG) was isolated from papaya pulp and used to study gene expression and enzyme activity during normal and ethylene-induced ripening and after exposure of the fruit to 1-MCP. Northern-blot analysis demonstrated that cpPG transcription was strongly induced during ripening and was highly ethylene-dependent. The accumulation of cpPG transcript was paralleled by enzyme activity, and inversely correlated to the pulp firmness. Preliminary in silica analysis of the cpPG genomic sequence revealed the occurrence of putative regulatory motifs in the promoter region that may help to explain the effects of plant hormones and non-abiotic stresses on papaya fruit firmness. This newly isolated cpPG is an important candidate for functional characterization and manipulation to control the process of pulp softening during papaya ripening. (C) 2009 Elsevier Masson SAS. All rights reserved.
Resumo:
Respiratory syncytial virus (RSV) is recognized as the leading cause of nosocomial respiratory infection among hematopoietic stem cell transplant (HSCT) recipients, causing considerable morbidity and mortality. RSV is easily transmitted by contact with contaminated surfaces, and in HSCT units, more than 50% of RSV infections have been characterized as of nosocomial origin. From April 2001 to October 2002, RSV was identified by direct immunofluorescent assay in 42 symptomatic HSCT recipients. Seven RSV strains from 2001 and 12 RSV strains from 2002 were sequenced. RNA extraction, cDNA synthesis, and seminested polymerase chain reaction (PCR) with primers complementary to RSV genes G and F were pet-formed. PCR products were analyzed by nucleotide sequencing of the C-terminal region of gene G for typing (in group A or B). Of the 7 strains analyzed in 2001, only 2 belonged to group B; the other 5 belonged to group A. Of these 7 strains, 3 were identical and were from recipients receiving outpatient care. In 2002, of the 12 strains analyzed, 3 belonged to group A and the other 9 belonged to group B. Of these 9 strains, 7 were genetically identical and were also from recipients receiving outpatient care. Therefore, multiple strains of RSV cocirculated in the hematopoietic stem cell transplant units (ward and outpatient units) between 2001 and 2002. Nosocomial transmission was more likely to occur at the HSCT outpatient unit than in the HSCT ward. Infection control practices should also be implemented in the outpatient setting.
Resumo:
The trematode Schistosoma mansoni is the primary cause of schistosomiasis, a devastating neglected tropical disease that affects 200 million individuals. Identifying novel therapeutic targets for the treatment of schistosomiasis is therefore of great public interest. The catecholamines norepinephrine (NE) and dopamine (DA) are essential for the survival of the parasite as they cause muscular relaxation and a lengthening in the parasite and thereby control movement. Here we characterize a novel dopamine/norepinephrine transporter (SmDAT) gene transcript, from S. mansoni. The SmDAT is expressed in the adult form and in the sporocyst form (infected snails) of the parasite, and also in the egg and miracidium stage. It is absent in the cercariae stage but curiously a transcript missing the exon encoding transmembrane domain 8 was identified in this stage. Heterologous expression of the cDNA in mammalian cells resulted in saturable, dopamine transport activity with an apparent affinity for dopamine comparable to that of the human dopamine transporter. Efflux experiments reveal notably higher substrate selectivity compared with its mammalian counterparts as amphetamine is a much less potent efflux elicitor against SmDAT compared to the human DAT. Pharmacological characterization of the SmDAT revealed that most human DAT inhibitors including psychostimulants such as cocaine were significantly less potent in inhibiting SmDAT. Like DATs from other simpler organisms the pharmacology for SmDAT was more similar to the human norepinephrine transporter. We were not able to identify other dopamine transporting carriers within the completed parasite genome and we hypothesize that the SmDAT is the only catecholamine transporter in the parasite and could be responsible for not only clearing DA but also NE. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The sumoylation pathway is a post-translational modification of nuclear proteins widespread among several organisms. SMT3C is the main protein involved in this process and it is covalently conjugated to a diverse assortment of nuclear protein targets. To date, 3 SUMO paralogues (SMT3C, A/B) have been characterized in mammals and plants. In this work we characterized two SUMO related genes, named SMT3B and SMT3C throughout Schistosoma mansoni life cycle. The SmSMTB/C encodes for proteins sharing significant amino acid homology with SMT3. Phylogenetical analyses revealed that both SmSMT3B/C are distinct proteins. Additionally, SmSMT3B and C are expressed in cercariae, adult worms, eggs and schistosomula however SinSMT3C gene showed an expression level 7 to 9 fold higher than SmSMT3B in eggs, schistosomula and adult worms. The comparison between the SmSMT3C genomic and cDNA sequences established that the encoding sequence is interrupted by 3 introns of 70, 37 and 36 bp. Western Blot has shown SMT3 conjugates are present in nuclear and total protein fractions of adults and cercariae. Therefore our results suggest a functional sumoylation pathway, and the presence of two paralogues also suggests the specificity of substrates for SMT3 in S. mansoni. (c) 2008 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Glioblastoma multiforme (GBM) is a highly invasive and radioresistant brain tumor. Aiming to study how glioma cells respond to gamma-rays in terms of biological processes involved in cellular responses, we performed experiments at cellular context and gene expression analysis in U343-MG-a GBM cells irradiated with 1 Gy and collected at 6 h post-irradiation. The survival rate was approximately 61% for 1 Gy and was completely reduced at 16 Gy. By performing the microarray technique, 859 cDNA clones were analyzed. The Significance Analysis of Microarray algorithm indicated 196 significant expressed genes (false discovery rate (FDR) = 0.42%): 67 down-regulated and 97 up-regulated genes, which belong to several classes: metabolism, adhesion/cytoskeleton, signal transduction, cell cycle/apoptosis, membrane transport, DNA repair/DNA damage signaling, transcription factor, intracellular signaling, and RNA processing. Differential expression patterns of five selected genes (HSPA9B, INPP5A, PIP5K1A, FANCG, and TPP2) observed by the microarray analysis were further confirmed by the quantitative real time RT-PCR method, which demonstrated an up-regulation status of those genes. These results indicate a broad spectrum of biological processes (which may reflect the radio-resistance of U343 cells) that were altered in irradiated glioma cells, so as to guarantee cell survival.
Resumo:
The prognosis of glioblastomas is still extremely poor and the discovery of novel molecular therapeutic targets can be important to optimize treatment strategies. Gene expression analyses comparing normal and neoplastic tissues have been used to identify genes associated with tumorigenesis and potential therapeutic targets. We have used this approach to identify differentially expressed genes between primary glioblastomas and non-neoplastic brain tissues. We selected 20 overexpressed genes related to cell cycle, cellular movement and growth, proliferation and cell-to-cell signaling and analyzed their expression levels by real time quantitative PCR in cDNA obtained from microdissected fresh tumor tissue from 20 patients with primary glioblastomas and from 10 samples of non-neoplastic white matter tissue. The gene expression levels were significantly higher in glioblastomas than in non-neoplastic white matter in 18 out of 20 genes analyzed: P < 0.00001 for CDKN2C, CKS2, EEF1A1, EMP3, PDPN, BNIP2, CA12, CD34, CDC42EP4, PPIE, SNAI2, GDF15 and MMP23b; and NFIA (P: 0.0001), GPS1 (P: 0.0003), LAMA1 (P: 0.002), STIM1 (P: 0.006), and TASP1 (P: 0.01). Five of these genes are located in contiguous loci at 1p31-36 and 2 at 17q24-25 and 8 of them encode surface membrane proteins. PDPN and CD34 protein expression were evaluated by immunohistochemistry and they showed concordance with the PCR results. The present results indicate the presence of 18 overexpressed genes in human primary glioblastomas that may play a significant role in the pathogenesis of these tumors and that deserve further functional investigation as attractive candidates for new therapeutic targets.
Resumo:
We have performed cDNA microarray analyses to identify gene expression differences between highly invasive glioblastoma multiforme (GBM) and typically benign pilocytic astrocytomas (PA). Despite the significant clinical and pathological differences between the 2 tumor types, only 63 genes were found to exhibit 2-fold or greater overexpression in GBM as compared to PA. Forty percent of these genes are related to the regulation of the cell cycle and mitosis. QT-PCR validation of 6 overexpressed genes: MELK, AUKB, ASPM, PRC1, IL13RA2 and KIAA0101 confirmed at least a 5-fold increase in the average expression levels in GBM. Maternal embryonic leucine zipper kinase (MELK) exhibited the most statistically significant difference. A more detailed investigation of MELK expression was undertaken to study its oncogenic relevance. In the examination of more than 100 tumors of the central nervous system, we found progressively higher expression of MELK with astrocytoma grade and a noteworthy uniformity of high level expression in GBM. Similar level of overexpression was also observed in medulloblastoma. We found neither gene promoter hypomethylation nor amplification to be a factor in MELK expression, but were able to demonstrate that MELK knockdown in malignant astrocytoma cell lines caused a reduction in proliferation and anchorage-independent growth in in vitro assays. Our results indicate that GBM and PA differ by the expression of surprisingly few genes. Among them, MELK correlated with malignancy grade in astrocytomas and represents a therapeutic target for the management of the most frequent brain tumors in adult and children. (C) 2007 Wiley-Liss, Inc.
Resumo:
Since circulating leukocytes, mainly B and T cells, continuously maintain vigilant and comprehensive immune surveillance, these cells could be used as reporters for signs of infection or other pathologies, including cancer. Activated lymphocyte clones trigger a sensitive transcriptional response, which could be identified by gene expression profiling. To assess this hypothesis, we conducted microarray analysis of the gene expression profile of lymphocytes isolated from immunocompetent BALB/c mice subcutaneously injected with different numbers of tumorigenic B61 fibrosarcoma cells. Flow cytometry demonstrated that the number of circulating T (CD3(+)CD4(+) or CD3(+)CD8(+)) or B (CD19(+)) cells did not change. However, the lymphocytes isolated from tumor cell-injected animals expressed a unique transcriptional profile that was identifiable before the development of a palpable tumor mass. This finding demonstrates that the transcriptional response appears before alterations in the main lymphocyte subsets and that the gene expression profile of peripheral lymphocytes can serve as a sensitive and accurate method for the early detection of cancer. Exp Biol Med 234:802-812, 2009
Resumo:
Patients presenting with active Systemic lupus erythematosus (SLE) manifestations may exhibit distinct pathogenetic features in relation to inactive SLE. Also, cDNA microarrays may potentially discriminate the gene expression profile of a disease or disease variant. Therefore, we evaluated the expression profile of 4500 genes in peripheral blood lymphocytes (PBL) of SLE patients. We studied 11 patients with SLE (seven with active SLE and four with inactive SLE) and eight healthy controls. Total RNA was isolated from PBL, reverse transcribed into cDNA, and postlabeled with Cy3 fluorochrome. These probes were then hybridized to a glass slide cDNA microarray containing 4500 human IMAGE cDNA target sequences. An equimolar amount of total RNA from human cell lines served as reference. The microarray images were quantified, normalized, and analyzed using the R environment (ANOVA, significant analysis of microarrays, and cluster-tree view algorithms). Disease activity was assessed by the SLE disease activity index. Compared to the healthy controls, 104 genes in active SLE patients (80 repressed and 24 induced) and 52 genes in nonactive SLE patients (31 induced and 21 repressed) were differentially expressed. The modulation of 12 genes, either induced or repressed, was found in both disease variants; however, each disease variant had differential expression of different genes. Taken together, these results indicate that the two lupus variants studied have common and unique differentially expressed genes. Although the biological significance of the differentially expressed genes discussed above has not been completely understood, they may serve as a platform to further explore the molecular basis of immune deregulation in SLE.
Resumo:
Objectives To evaluate the gene expression profile of fibroblasts from affected and non-affected skin of systemic sclerosis (SSc) patients and from controls. Materials and methods Labeled cDNA from fibroblast cultures from forearm (affected) and axillary (non-affected) skin from six diffuse SSc patients, from three normal controls, and from MOLT-4/HEp-2/normal fibroblasts (reference pool) was probed in microarrays generated with 4193 human cDNAs from the IMAGE Consortium. Microarray images were converted into numerical data and gene expression was calculated as the ratio between fibroblast cDNA (Cy5) and reference pool cDNA (Cy3) data and analyzed by R environment/Aroma, Cluster, Tree View, and SAM softwares. Differential expression was confirmed by real time PCR for a set of selected genes. Results Eighty-eight genes were up- and 241 genes down-regulated in SSc fibroblasts. Gene expression correlation was strong between affected and non-affected fibroblast samples from the same patient (r>0.8), moderate among fibroblasts from all patients (r=0.72) and among fibroblasts from all controls (r=0.70), and modest among fibroblasts from patients and controls (r=0.55). The differential expression was confirmed by real time PCR for all selected genes. Conclusions Fibroblasts from affected and non-affected skin of SSc patients shared a similar abnormal gene expression profile, suggesting that the widespread molecular disturbance in SSc fibroblasts is more sensitive than histological and clinical alterations. Novel molecular elements potentially involved in SSc pathogenesis were identified.
Resumo:
Sera from 269 rodents obtained during the routine surveillance operations in plague areas of Rio de Janeiro and Pernambuco states, Brazil were tested by ELISA for specific IgG antibodies against a recombinant nucleocapsid (N) protein of Araraquara hantavirus. ELISA-positive sera were submitted to reverse transcriptase-polymerase chain reaction (RT-PCR) for amplification of the virus genome and later sequencing for identification of the viral variant. The samples from the state of Pernambuco were antibody negative, and although four from Rio de Janeiro were ELISA-positive, they failed to yield viral cDNA by RT-PCR. This is the first report of the presence of antibodies to a hantavirus among rodents from Rio de Janeiro and suggests the possibility of human cases of hantavirus pulmonary syndrome (HPS) in that state, although no case has yet been reported. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
293T and Sk-Hep-1 cells were transduced with a replication-defective self-inactivating HIV-1 derived vector carrying FVIII cDNA. The genomic DNA was sequenced to reveal LTR/human genome junctions and integration sites. One hundred and thirty-two sequences matched human sequences, with an identity of at least 98%. The integration sites in 293T-FVIIIDB and in Sk-Hep-FVIIIDB cells were preferentially located in gene regions. The integrations in both cell lines were distant from the CpG islands and from the transcription start sites. A comparison between the two cell lines showed that the lentiviral-transduced DNA had the same preferred regions in the two different cell lines.
Resumo:
Microarray gene expression profiling is a high-throughput system used to identify differentially expressed genes and regulation patterns, and to discover new tumor markers. As the molecular pathogenesis of meningiomas and schwannomas, characterized by NF2 gene alterations, remains unclear and suitable molecular targets need to be identified, we used low density cDNA microarrays to establish expression patterns of 96 cancer-related genes on 23 schwannomas, 42 meningiomas and 3 normal cerebral meninges. We also performed a mutational analysis of the NF2 gene (PCR, dHPLC, Sequencing and MLPA), a search for 22q LOH and an analysis of gene silencing by promoter hypermethylation (MS-MLPA). Results showed a high frequency of NF2 gene mutations (40%), increased 22q LOH as aggressiveness increased, frequent losses and gains by MLPA in benign meningiomas, and gene expression silencing by hypermethylation. Array analysis showed decreased expression of 7 genes in meningiomas. Unsupervised analyses identified 2 molecular subgroups for both meningiomas and schwannomas showing 38 and 20 differentially expressed genes, respectively, and 19 genes differentially expressed between the two tumor types. These findings provide a molecular subgroup classification for meningiomas and schwannomas with possible implications for clinical practice.