948 resultados para COUPLED ELECTRON-TRANSFER
Resumo:
The influence of the axial organic ligand R on the electrochemical oxidation of the compounds [RCoIII(salen)DMF)], where salen is bis(salicylaldehyde)ethylenediimine, and R CH3, C2H5, n-C3H7, n-C4H9, s-C4H9, i-C4H9, CH2Cl, CF3CH2, c-C6H11CH2, c-C6H11, C6H5, C6H5CH2, p-CH3C6H4CH2, and p-NO2C6H4CH2, was studied by means of cyclic voltametry in dimethylformamide (DMF), 0.2 M in tetraethylammonium perchlorate (TEAP), at 25 and -20°C, with a platinum disc working electrode. The above-mentioned compounds can be classified according to their electrochemical behavior. (a) The complexes with R CH3, C2H5, n-C3H7, n-C4H9, c-C6H11CH2, and C6H5 undergo a reversible one-electron oxidation in the 10-50 V s-1 potential scan range. At slower scan rates, the oxidized product decomposes chemically. At -20°C, this chemical step is slow, and a reversible one-electron electrochemical oxidation is observed. (b) The compounds with R CH2Cl, C6H5CH2, p-CH3C6H4CH2 and p-NO2C6H4CH2 undergo a quasi-reversible one-electron oxidation at room temperaure. At -20°C, the electrochemical process becomes more complex. A following chemical reactions is coupled to the quasi-reversible one-electron transfer. Two reduction peaks are observed. (c) The compounds with R i-C4H9, s-C4H9, and c-C6H11 undergo a reversible one-electron oxidation at -20°C. At room temperature, the irreversible chemical reaction following the electron transfer step is too fast to allow the isolation of the electrochemical step. (d) At -20°C, the derivatives with R C2H5, c-C6H11 CH2 and c-C6H11 are adsorbed at the electrode surface. Evidence indicates that the reagent in these reactions is the pentacoordinated species [RCoIII(salen)]. A linear free-energy relationship between E1/2 (for reversible processes) and the Taft polar parameters o* was obtained with a slope of ρ* = 0.25 ± 0.03. As expected, the benzyl derivatives which present mesomeric effects do not fit this polar correlation. The rated of the electrochemical oxidation is also affected by the nature of the ligand R. For the ligands which are strong electron-withdrawing groups and for the benzyl derivatives, the rate of the electrochemical oxidation of the metal ion decreases at room temperature. At lower temperatures, it is suggested that the oxidation to the CoIV-R species is followed by a chemical reaction in which this complex is partly transformed into a CoIII(R*) species, which is reduced at a much more cathodic potential than the Co(IV) species. © 1979.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Elucidating Redox-Level Dispersion and Local Dielectric Effects within Electroactive Molecular Films
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Tribocharged polymers display macroscopically patterned positive and negative domains, verifying the fractal geometry of electrostatic mosaics previously detected by electric probe microscopy. Excess charge on contacting polyethylene (PE) and polytetrafluoroethylene (PTFE) follows the triboelectric series but with one caveat: net charge is the arithmetic sum of patterned positive and negative charges, as opposed to the usual assumption of uniform but opposite signal charging on each surface. Extraction with n-hexane preferentially removes positive charges from PTFE, while 1,1-difluoroethane and ethanol largely remove both positive and negative charges. Using suitable analytical techniques (electron energy-loss spectral imaging, infrared microspectrophotometry and carbonization/colorimetry) and theoretical calculations, the positive species were identified as hydrocarbocations and the negative species were identified as fluorocarbanions. A comprehensive model is presented for PTFE tribocharging with PE: mechanochemical chain homolytic rupture is followed by electron transfer from hydrocarbon free radicals to the more electronegative fluorocarbon radicals. Polymer ions self-assemble according to Flory-Huggins theory, thus forming the experimentally observed macroscopic patterns. These results show that tribocharging can only be understood by considering the complex chemical events triggered by mechanical action, coupled to well-established physicochemical concepts. Patterned polymers can be cut and mounted to make macroscopic electrets and multipoles.
Resumo:
Because of its electronic properties, sulfur plays a major role in a variety of metabolic processes and, more in general, in the chemistry of life. In particular, S-S bridges between cysteines are present in the amino acid backbone of proteins. Protein disulfur radical anions may decay following different paths through competing intra and intermolecular routes, including bond cleavage, disproportionation, protein-protein cross linking, and electron transfer. Indeed, mass spectrometry ECD (electron capture dissociation massspectroscopy) studies have shown that capture of low-energy (<0.2 eV) electrons by multiply protonated proteins is followed by dissociation of S-S bonds holding two peptide chains together. In view of the importance of organic sulfur chemistry, we report on electron interactions with disulphide bridges. To study these interactions we used as prototypes the molecules dimethyl sulfide [(CH3)2S] and dimethyl disulfide [(H3C)S2(CH3)]. We seek to better understand the electron-induced cleavage of the disulfide bond. To explore dissociative processes we performed electron scattering calculations with the Schwinger Multichannel Method with pseudopotentials (SMCPP), recently parallelized with OpenMP directives and optimized with subroutines for linear algebra (BLAS) and LAPACK routines. Elastic cross sections obtained for different S-S bond lengths indicate stabilization of the anion formed by electron attachment to a σ*SS antibonding orbital, such that dissociation would be expected.
Resumo:
Membrane proteins play a major role in every living cell. They are the key factors in the cell’s metabolism and in other functions, for example in cell-cell interaction, signal transduction, and transport of ions and nutrients. Cytochrome c oxidase (CcO), as one of the membrane proteins of the respiratory chain, plays a significant role in the energy transformation of higher organisms. CcO is a multi centered heme protein, utilizing redox energy to actively transport protons across the mitochondrial membrane. One aim of this dissertation is to investigate single steps in the mechanism of the ion transfer process coupled to electron transfer, which are not fully understood. The protein-tethered bilayer lipid membrane is a general approach to immobilize membrane proteins in an oriented fashion on a planar electrode embedded in a biomimetic membrane. This system enables the combination of electrochemical techniques with surface enhanced resonance Raman (SERRS), surface enhanced reflection absorption infrared (SEIRAS), and surface plasmon spectroscopy to study protein mediated electron and ion transport processes. The orientation of the enzymes within the surface confined architecture can be controlled by specific site-mutations, i.e. the insertion of a poly-histidine tag to different subunits of the enzyme. CcO can, thus, be oriented uniformly with its natural electron pathway entry pointing either towards or away from the electrode surface. The first orientation allows an ultra-fast direct electron transfer(ET) into the protein, not provided by conventional systems, which can be leveraged to study intrinsic charge transfer processes. The second orientation permits to study the interaction with its natural electron donor cytochrome c. Electrochemical and SERR measurements show conclusively that the redox site structure and the activity of the surface confined enzyme are preserved. Therefore, this biomimetic system offers a unique platform to study the kinetics of the ET processes in order to clarify mechanistic properties of the enzyme. Highly sensitive and ultra fast electrochemical techniques allow the separation of ET steps between all four redox centres including the determination of ET rates. Furthermore, proton transfer coupled to ET could be directly measured and discriminated from other ion transfer processes, revealing novel mechanistic information of the proton transfer mechanism of cytochrome c oxidase. In order to study the kinetics of the ET inside the protein, including the catalytic center, time resolved SEIRAS and SERRS measurements were performed to gain more insight into the structural and coordination changes of the heme environment. The electrical behaviour of tethered membrane systems and membrane intrinsic proteins as well as related charge transfer processes were simulated by solving the respective sets of differential equations, utilizing a software package called SPICE. This helps to understand charge transfer processes across membranes and to develop models that can help to elucidate mechanisms of complex enzymatic processes.
Resumo:
Die transmembrane Potenzialdifferenz Δφm ist direkt mit der katalytischen Aktivität der Cytochrom c Oxidase (CcO) verknüpft. Die CcO ist das terminale Enzym (Komplex IV) in der Atmungskette der Mitochondrien. Das Enzym katalysiert die Reduktion von O2 zu 2 H2O. Dabei werden Elektronen vom natürlichen Substrat Cytochrom c zur CcO übertragen. Der Eleltronentransfer innerhalb der CcO ist an die Protonentranslokation über die Membran gekoppelt. Folglich bildet sich über der inneren Membrane der Mitochondrien eine Differenz in der Protonenkonzentration. Zusätzlich wird eine Potenzialdifferenz Δφm generiert.rnrnDas Transmembranpotenzial Δφm kann mit Hilfe der Fluoreszenzspektroskopie unter Einsatz eines potenzialemfindlichen Farbstoffs gemessen werden. Um quantitative Aussagen aus solchen Untersuchungen ableiten zu können, müssen zuvor Kalibrierungsmessungen am Membransystem durchgeführt werden.rnrnIn dieser Arbeit werden Kalibrierungsmessungen von Δφm in einer Modellmembrane mit inkorporiertem CcO vorgestellt. Dazu wurde ein biomimetisches Membransystem, die Proteinverankerte Doppelschicht (protein-tethered Bilayer Lipid Membrane, ptBLM), auf einem transparenten, leitfähigem Substrat (Indiumzinnoxid, ITO) entwickelt. ITO ermöglicht den simultanen Einsatz von elektrochemischen und Fluoreszenz- oder optischen wellenleiterspektroskopischen Methoden. Das Δφm in der ptBLM wurde durch extern angelegte, definierte elektrische Spannungen induziert. rnrnEine dünne Hydrogelschicht wurde als "soft cushion" für die ptBLM auf ITO eingesetzt. Das Polymernetzwerk enthält die NTA Funktionsgruppen zur orientierten Immobilisierung der CcO auf der Oberfläche der Hydrogels mit Hilfe der Ni-NTA Technik. Die ptBLM wurde nach der Immobilisierung der CcO mittels in-situ Dialyse gebildet. Elektrochemische Impedanzmessungen zeigten einen hohen elektrischen Widerstand (≈ 1 MΩ) der ptBLM. Optische Wellenleiterspektren (SPR / OWS) zeigten eine erhöhte Anisotropie des Systems nach der Bildung der Doppellipidschicht. Cyklovoltammetriemessungen von reduziertem Cytochrom c bestätigten die Aktivität der CcO in der Hydrogel-gestützten ptBLM. Das Membranpotenzial in der Hydrogel-gestützten ptBLM, induziert durch definierte elektrische Spannungen, wurde mit Hilfe der ratiometrischen Fluoreszenzspektroskopie gemessen. Referenzmessungen mit einer einfach verankerten Dopplellipidschicht (tBLM) lieferten einen Umrechnungsfaktor zwischen dem ratiometrischen Parameter Rn und dem Membranpotenzial (0,05 / 100 mV). Die Nachweisgrenze für das Membranpotenzial in einer Hydrogel-gestützten ptBLM lag bei ≈ 80 mV. Diese Daten dienen als gute Grundlage für künftige Untersuchungen des selbstgenerierten Δφm der CcO in einer ptBLM.
Resumo:
The membrane protein Cytochrome c Oxidase (CcO) is one of the most important functional bio-molecules. It appears in almost every eukaryotic cell and many bacteria. Although the different species differ in the number of subunits, the functional differences are merely marginal. CcO is the terminal link in the electron transfer pathway of the mitochondrial respiratory chain. Electrons transferred to the catalytic center of the enzyme conduce to the reduction of molecular oxygen to water. Oxygen reduction is coupled to the pumping of protons into the inter-membrane space and hence generates a difference in electrochemical potential of protons across the inner mitochondrial membrane. This potential difference drives the synthesis of adenosine triphosphate (ATP), which is the universal energy carrier within all biological cells. rnrnThe goal of the present work is to contribute to a better understanding of the functional mechanism of CcO by using time-resolved surface enhanced resonance Raman spectroscopy (TR-SERRS). Despite intensive research effort within the last decades, the functional mechanism of CcO is still subject to controversial discussions. It was the primary goal of this dissertation to initiate electron transfer to the redox centers CuA, heme a, heme a3 and CuB electrochemically and to observe the corresponding redox transitions in-situ with a focus on the two heme structures by using SERRS. A measuring cell was developed, which allowed combination of electrochemical excitation with Raman spectroscopy for the purpose of performing the accordant measurements. Cytochrome c was used as a benchmark system to test the new measuring cell and to prove the feasibility of appropriate Raman measurements. In contrast to CcO the heme protein cc contains only a single heme structure. Nevertheless, characteristic Raman bands of the hemes can be observed for both proteins.rnrnIn order to investigate CcO it was immobilized on top of a silver substrate and embedded into an artificial membrane. The catalytic activity of CcO and therefore the complete functional capability of the enzyme within the biomimetic membrane architecture was verified using cyclic voltammetry. Raman spectroscopy was performed using a special nano-structured silver surface, which was developed within the scope of the present work. This new substrate combined two fundamental properties. It facilitated the formation of a protein tethered bilayer lipid membrane (ptBLM) and it allowed obtaining Raman spectra with sufficient high signal-to-noise ratios.rnSpectro-electrochemical investigations showed that at open circuit potential the enzyme exists in a mixed-valence state, with heme a and and heme a3 in the reduced and oxidized state, respectively. This was considered as an intermediate state between the non-activated and the fully activated state of CcO. Time-resolved SERRS measurements revealed that a hampered electron transfer to the redox center heme a3 characterizes this intermediate state.rn
Resumo:
The redox chemistry and the related surface phase behavior of Safranine (SAF) and Janus Green B (JGB) have been studied by means of cyclic voltammetry in combination with in situ Scanning Tunneling Microscopy using HOPG (Highly Oriented Pyrolytic Graphite) and single crystalline Cu(1 0 0) as model substrates, both revealing different widths of the accessible potential windows. JGB and SAF serve as prototypical heterocyclic suppressor/leveler additives that are used for the metallization of 3D-TSVs (3D Through Silicon Vias) following a classical "leveling" concept. SAF can be considered as the reductive decomposition product of JGB that is formed at the copper/electrolyte interface upon electroplating. Both additives reveal a pronounced pH-dependent redox-chemistry with redox-transitions lying close to or even beyond the anodic limit of the copper potential window. Affected by these redox-processes are in particular the aromatic cores of those heterocycles that can be (quasi)reversibly reduced by a two electron transfer process within the potential window of copper. Therefore we identify the reduced form of those dyes as the active components for the suppressing/leveling effect in copper plating. STM data clearly shows a dye surface phase behavior that is crucially determined by its potential-dependent redox-chemistry. This will be exemplarily discussed for the SAF dye. On chloride-modified Cu(1 0 0) mono-reduced SAF forms a structurally well-defined monolayer of cationic stacking polymers. However, this coupled anion/cation layer reveals only minor suppressing capabilities with respect to the copper dissolution and deposition processes. Complete reduction of the aromatic heterocycle finally leads to the 3D precipitation of hydrophobic reaction products. 3D clusters of this SAF precipitate are discussed as the active structural motif for the suppressing effect of these dyes. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
We investigated structural aspects of electron transfer (ET) in tunneling junctions (Au(1 1 1)vertical bar FcN vertical bar solution gap vertical bar Au STM tip) with four different redox-active N-thioalk(ano)ylferrocenes (FcN) embedded. The investigated molecules consist of a redox-active ferrocene (Fc) moiety connected via alkyl spacers with N = 4, 6, 8 and 11 carbon atoms to a thiol anchoring group. We found that for short FcNs (N = 4, 6,8) the redox-mediated ET response increases with the increase of the alkyl chain length, while no enhancement of the ET was observed for Fc1 1. The model of two-step ET with partial vibrational relaxation by Kuznetsov and Ulstrup was used to rationalize these results. The theoretical ET steps were assigned to two processes: (1) electron tunneling from the Fc group to the Au tip through the electrolyte layer and (2) electron transport from the Au(1 1 1) substrate to the Fc group through the organic adlayer. We argue that for the three short FcNs, the first process represents the rate-limiting step. The increase of the length of the alkyl chain leads to an approach of the Fc group to the STM tip, and consequently accelerates the first El' step. In case of the Fcl 1 junctions the rather high thickness of the organic layer leads to a decrease of the rate of the second ET step. In consequence, the contribution of the redox-mediated current enhancement to the total tunneling current appears to be insignificant. Our work demonstrates the importance of combined structural and transport approaches for the understanding of Er processes in electrochemical nanosystems. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The single electron transistor (SET) is a charge-based device that may complement the dominant metal-oxide-semiconductor field effect transistor (MOSFET) technology. As the cost of scaling MOSFET to smaller dimensions are rising and the the basic functionality of MOSFET is encountering numerous challenges at dimensions smaller than 10nm, the SET has shown the potential to become the next generation device which operates based on the tunneling of electrons. Since the electron transfer mechanism of a SET device is based on the non-dissipative electron tunneling effect, the power consumption of a SET device is extremely low, estimated to be on the order of 10^-18J. The objectives of this research are to demonstrate technologies that would enable the mass produce of SET devices that are operational at room temperature and to integrate these devices on top of an active complementary-MOSFET (CMOS) substrate. To achieve these goals, two fabrication techniques are considered in this work. The Focus Ion Beam (FIB) technique is used to fabricate the islands and the tunnel junctions of the SET device. A Ultra-Violet (UV) light based Nano-Imprint Lithography (NIL) call Step-and-Flash- Imprint Lithography (SFIL) is used to fabricate the interconnections of the SET devices. Combining these two techniques, a full array of SET devices are fabricated on a planar substrate. Test and characterization of the SET devices has shown consistent Coulomb blockade effect, an important single electron characteristic. To realize a room temperature operational SET device that function as a logic device to work along CMOS, it is important to know the device behavior at different temperatures. Based on the theory developed for a single island SET device, a thermal analysis is carried out on the multi-island SET device and the observation of changes in Coulomb blockade effect is presented. The results show that the multi-island SET device operation highly depends on temperature. The important parameters that determine the SET operation is the effective capacitance Ceff and tunneling resistance Rt . These two parameters lead to the tunneling rate of an electron in the SET device, Γ. To obtain an accurate model for SET operation, the effects of the deviation in dimensions, the trap states in the insulation, and the background charge effect have to be taken into consideration. The theoretical and experimental evidence for these non-ideal effects are presented in this work.
Resumo:
Electrochemical reactivity and structure properties of electrogenic bacteria, Geobacter sulfurreducens (Gs) were studied to explore the heterogeneous electron transfer at the bacteria/electrode interface using electrochemical and in-situ spectroscopic techniques. The redox behavior of Gs adsorbed on a gold electrode, which is modified with a ω-functionalized self-assembled monolayer (SAM) of alkanethiols, depends strongly on the terminal group. The latter interacts directly with outermost cytochromes embedded into the outer membrane of the Gs cells. The redox potential of bacterial cells bound electrostatically to a carboxyl-terminated SAM is close to that observed for bacteria attached to a bare gold electrode, revealing a high electronic coupling at the cell/SAM interface. The redox potentials of bacterial cells adsorbed on amino- and pyridyl-terminated SAMs are significantly different suggesting that the outermost cytochromes changes their conformation upon adsorption on these SAMs. No redox activity of Gs was found with CH3-, N(CH3)3+- and OH-terminated SAMs. Complementary in-situ spectroscopic studies on bacteria/SAMs/Au electrode assemblies were carried out to monitor structure changes of the bacterial cells upon polarization. Spectro-electrochemical techniques revealed the electrochemical turnover of the oxidized and reduced states of outer membrane cytochromes (OMCs) in Gs, providing evidence that the OMCs are responsible for the direct electron transfer to metal electrodes, such as gold or silver, during the electricity production. Furthermore, we observed spectroscopic signatures of the native structure of the OMCs and no conformational change during the oxidation/reduction process of the microorganisms. These findings indicate that the carboxyl-anchoring group provides biocompatible conditions for the outermost cytochromes of the Gs, which facilitate the heterogeneous electron transfer at the microorganism/electrode interface.
Resumo:
Two benzodifuran (BDF)-coupled spiropyran (SP) systems and their BDF reference compounds were obtained in good yields through HuisgenMeldalSharpless click chemistry and then subjected to investigation of their electrochemical and photophysical properties. In both SP and merocyanine (MC) forms of the coupled molecules, the BDF-based emission is quenched to around 1 of the quantum yield of emission from the BDF reference compounds. Based on electrochemical data, this quenching is attributed to oxidative electron-transfer quenching. Irradiation at 366nm results in ring opening to the MC forms of the BDF-coupled SP compounds and the SP reference compound with a quantum efficiency of about 50. The rate constants for the thermal ring closing are approximately 3.4x103s1. However, in the photostationary states the MC fractions of the coupled molecules are substantially lower than that of the reference SP compound, attributed to the observed acceleration of the ring-closing reaction upon irradiation. As irradiation at 366nm invariably also excites higher-energy transitions of the BDF units in the coupled compounds, the ring-opening reaction is accelerated relative to the SP reference, which results in lower MC fractions in the photostationary state. Reversible photochromism of these BDF-coupled SP compounds renders them promising in the field of molecular switches.
Resumo:
Intermolecular electron-transfer reactions have a crucial role in biology, solution chemistry and electrochemistry. The first step of such reactions is the expulsion of the electron to the solvent, whose mechanism is determined by the structure and dynamical response of the latter. Here we visualize the electron transfer to water using ultrafast fluorescence spectroscopy with polychromatic detection from the ultraviolet to the visible region, upon photo-excitation of the so-called charge transfer to solvent states of aqueous iodide. The initial emission is short lived (~60 fs) and it relaxes to a broad distribution of lower-energy charge transfer to solvent states upon rearrangement of the solvent cage. This distribution reflects the inhomogeneous character of the solvent cage around iodide. Electron ejection occurs from the relaxed charge transfer to solvent states with lifetimes of 100–400 fs that increase with decreasing emission energy.