989 resultados para CONE BEAM


Relevância:

20.00% 20.00%

Publicador:

Resumo:

ABSTRACT Twelve beam-to-column connections between cold-formed steel sections consisting of three beam depths and four connection types were tested in isolation to investigate their behavior based on strength, stiffness and ductility. Resulting moment-rotation curves indicate that the tested connections are efficient moment connections where moment capacities ranged from about 65% to 100% of the connected beam capac-ity. With a moment capacity of greater than 80% of connected beam member capacity, some of the connec-tions can be regarded as full strength connections. Connections also possessed sufficient ductility with rota-tions of 20 mRad at failure although some connections were too ductile with rotations in excess of 30 mRad. Generally, most of the connections possess the strength and ductility to be considered as partial strength con-nections. The ultimate failures of almost all of the connections were due to local buckling of the compression web and flange elements of the beam closest to the connection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The LiteSteel beam (LSB) is a new hollow flange channel section developed by OneSteel Australian Tube Mills using their patented dual electric resistance welding and automated continuous roll-forming process. It has a unique geometry consisting of torsionally rigid rectangular hollow flanges and a relatively slender web. The LSBs are commonly used as flexural members in buildings. However, the LSB flexural members are subjected to lateral distortional buckling, which reduces their member moment capacities. Unlike the commonly observed lateral torsional buckling of steel beams, the lateral distortional buckling of LSBs is characterised by simultaneous lateral deflection, twist, and cross sectional change due to web distortion. An experimental study including more than 50 lateral buckling tests was therefore conducted to investigate the behaviour and strength of LSB flexural members. It included the available 13 LSB sections with spans ranging from 1200 to 4000 mm. Lateral buckling tests based on a quarter point loading were conducted using a special test rig designed to simulate the required simply supported and loading conditions accurately. Experimental moment capacities were compared with the predictions from the design rules in the Australian cold-formed steel structures standard. The new design rules in the standard were able to predict the moment capacities more accurately than previous design rules. This paper presents the details of lateral distortional buckling tests, in particular the features of the lateral buckling test rig, the results and the comparisons. It also includes the results of detailed studies into the mechanical properties and residual stresses of LSBs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Beam steering with high front-to-back ratio and high directivity on a small platform is proposed. Two closely spaced antenna pairs with eigenmode port decoupling are used as the basic radiating elements. Two orthogonal radiation patterns are obtained for each antenna pair. High front-to-back ratio and high directivity are achieved by combining the two orthogonal radiation patterns. With an infinite groundplane, a front-to-back ratio of 21 dB with a directivity of 9.8 dB can be achieved. Beam steering, at the expense of a slight decrease in directivity, is achieved by placing the two antenna pairs 0.5λ apart. The simulated half power beamwidth is 58°. A prototype was designed and the 2-D radiation patterns were measured. The prototype supports three directions of beam steering. The half power beamwidth was measured as 46°, 48°, and 50° for the three respective beam directions. The measured front-to-back ratio in azimuth plane is 8.5 dB, 8.0 dB and 7.6 dB, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, the delivery and portal imaging of one square-field and one conformal radiotherapy treatment was simulated using the Monte Carlo codes BEAMnrc and DOSXYZnrc. The treatment fields were delivered to a humanoid phantom from different angles by a 6 MV photon beam linear accelerator, with an amorphous-silicon electronic portal imaging device (a-Si EPID) used to provide images of the phantom generated by each field. The virtual phantom preparation code CTCombine was used to combine a computed-tomography-derived model of the irradiated phantom with a simple, rectilinear model of the a-Si EPID, at each beam angle used in the treatment. Comparison of the resulting experimental and simulated a-Si EPID images showed good agreement, within \[gamma](3%, 3 mm), indicating that this method may be useful in providing accurate Monte Carlo predictions of clinical a-Si EPID images, for use in the verification of complex radiotherapy treatments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gas sensing properties of nanostructured pure and iron-doped WO3 thin films are discussed. Electron beam evaporation technique has been used to obtain nanostructured thin films of WO3 and WO3:Fe with small grain size and porosity. Atomic force microscopy has been employed to study the microstructure. High sensitivity of both films towards NO2 is observed. Doping of the tungsten oxide film with Fe decreased the material resistance by a factor of about 30 when exposed to 5 ppm NO2. The high sensitivity is attributed to an improved microstructure of the films obtained through e-beam evaporation technique, and subsequent annealing at 300oC for 1 hour.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

When used as floor joists, the new mono-symmetric LiteSteel beam (LSB) sections require web openings to provide access for inspections and various services. The LSBs consist of two rectangular hollow flanges connected by a slender web, and are subjected to lateral distortional buckling effects in the intermediate span range. Their member capacity design formulae developed to date are based on their elastic lateral buckling moments, and only limited research has been undertaken to predict the elastic lateral buckling moments of LSBs with web openings. This paper addresses this research gap by reporting the development of web opening modelling techniques based on an equivalent reduced web thickness concept and a numerical method for predicting the elastic buckling moments of LSBs with circular web openings. The proposed numerical method was based on a formulation of the total potential energy of LSBs with circular web openings. The accuracy of the proposed method’s use with the aforementioned modelling techniques was verified through comparison of its results with those of finite strip and finite element analyses of various LSBs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recently developed cold-formed LiteSteel beam (LSB) sections have found increasing popularity in residential, industrial and commercial buildings due to their light weight and cost-effectiveness. Another beneficial characteristic is that they allow torsionally rigid rectangular flanges to be combined with economical fabrication processes. Currently, there is significant interest in the use of LSB sections as flexural members in floor joist systems. When used as floor joists, these sections require openings in the web to provide access for inspection and other services. At present, however, there is no design method available that provides accurate predictions of the moment capacities of LSBs with web openings. This paper presents the results of an investigation of the buckling and ultimate strength behaviour of LSB flexural members with web openings. A detailed fine element analysis (FEA)-based parametric study was conducted with the aim of developing appropriate design rules and making recommendations for the safe design of LSB floor joists. The results include the required moment capacity curves for LSB sections with a range of web opening combinations and spans and the development of appropriate design rules for the prediction of the ultimate moment capacities of LSBs with web openings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of cold-formed steel members as structural columns and beams in residential, industrial and commercial buildings has increased significantly in recent times. This study is focused on the use of cold-formed steel sections as flexural members subject to lateral-torsional buckling. For this purpose a finite element model of a simply supported lipped channel beam under uniform bending was developed, validated using available numerical and experimental results, and used in a detailed parametric study. The moment capacity results were then compared with the predictions from the current ambient temperature design rules in the cold-formed steel structures codes of Australia, New Zealand, North America and Europe. European design rules were found to be conservative while Australian and American design rules were unsafe. This paper presents the results of the numerical study, the comparison with the current design rules and the new proposed design rules.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The LiteSteel Beam (LSB) is an innovative cold-formed steel hollow flange section. When used as floor joists, the LSB sections require holes in the web to provide access for various services. In this study a detailed investigation was undertaken into the elastic lateral distortional buckling behaviour of LSBs with circular web openings subjected to a uniform moment using finite element analysis. Validated ideal finite element models were used first to study the effect of web holes on their elastic lateral distortional buckling behaviour. An equivalent web thickness method was then proposed using four different equations for the elastic buckling analyses of LSBs with web holes. It was found that two of them could be successfully used with approximate numerical models based on solid web elements with an equivalent reduced thickness to predict the elastic lateral distortional buckling moments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several studies of the surface effect on bending properties of a nanowire (NW) have been conducted. However, these analyses are mainly based on theoretical predictions, and there is seldom integration study in combination between theoretical predictions and simulation results. Thus, based on the molecular dynamics (MD) simulation and different modified beam theories, a comprehensive theoretical and numerical study for bending properties of nanowires considering surface/intrinsic stress effects and axial extension effect is conducted in this work. The discussion begins from the Euler-Bernoulli beam theory and Timoshenko beam theory augmented with surface effect. It is found that when the NW possesses a relatively small cross-sectional size, these two theories cannot accurately interpret the true surface effect. The incorporation of axial extension effect into Euler-Bernoulli beam theory provides a nonlinear solution that agrees with the nonlinear-elastic experimental and MD results. However, it is still found inaccurate when the NW cross-sectional size is relatively small. Such inaccuracy is also observed for the Euler-Bernoulli beam theory augmented with both contributions from surface effect and axial extension effect. A comprehensive model for completely considering influences from surface stress, intrinsic stress, and axial extension is then proposed, which leads to good agreement with MD simulation results. It is thus concluded that, for NWs with a relatively small cross-sectional size, a simple consideration of surface stress effect is inappropriate, and a comprehensive consideration of the intrinsic stress effect is required.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The presence of air and bone interfaces makes the dose distribution for head and neck cancer treatments difficult to accurately predict. This study compared planning system dose calculations using the collapsed-cone convolution algorithm with EGSnrcMonte Carlo simulation results obtained using the Monte Carlo DICOMToolKit software, for one oropharynx, two paranasal sinus and three nodal treatment plans. The difference between median doses obtained from the treatment planning and Monte Carlo calculations was found to be greatest in two bilateral treatments: 4.8%for a retropharyngeal node irradiation and 6.7% for an ethmoid paranasal sinus treatment. These deviations in median dose were smaller for two unilateral treatments: 0.8% for an infraclavicular node irradiation and 2.8% for a cervical node treatment. Examination of isodose distributions indicated that the largest deviations between Monte Carlo simulation and collapsed-cone convolution calculations were seen in the bilateral treatments, where the increase in calculated dose beyond air cavities was most significant.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Visual adaptation regulates contrast sensitivity during dynamically changing light conditions (Crawford, 1947; Hecht, Haig & Chase, 1937). These adaptation dynamics are unknown under dim (mesopic) light levels when the rod (R) and long (L), medium (M) and short (S) wavelength cone photoreceptor classes contribute to vision via interactions in shared non-opponent Magnocellular (MC), chromatically opponent Parvocellular (PC) and Koniocellular (KC) visual pathways (Dacey, 2000). This study investigated the time-course of adaptation and post-receptoral pathways mediating receptor specific rod and cone interactions under mesopic illumination. A four-primary photostimulator (Pokorny, Smithson & Quinlan, 2004) was used to independently control the activity of the four photoreceptor classes and their post-receptoral visual athways in human observers. In the first experiment, the contrast sensitivity and time-course of visual adaptation under mesopic illumination were measured for receptoral (L, S, R) and post-receptoral (LMS, LMSR, L-M) stimuli. An incremental (Rapid-ON) sawtooth conditioning pulse biased detection to ON-cells within the visual pathways and sensitivity was assayed relative to pulse onset using a briefly presented incremental probe that did not alter adaptation. Cone.Cone interactions with luminance stimuli (L cone, LMS, LMSR) reduced sensitivity by 15% and the time course of recovery was 25± 5ms-1 (μ ± SEM). PC mediated (+L-M) chromatic stimuli sensitivity loss was less (8%) than for luminance and recovery was slower (μ = 2.95 ± 0.05 ms-1), with KC mediated (S cone) chromatic stimuli showing a high sensitivity loss (38%) and the slowest recovery time (1.6 ± 0.2 ms-1). Rod-Rod interactions increased sensitivity by 20% and the time course of recovery was 0.7 ± 0.2 ms-1 (μ ± SD). Compared to these interaction types, Rod-Cone interactions reduced sensitivity to a lesser degree (5%) and showed the fastest recovery (μ = 43 ± 7 ms-1). In the second experiment, rod contribution to the magnocellular, parvocellular and koniocellular post-receptoral pathways under mesopic illumination was determined as a function of incremental stimulus duration and waveform (rectangular; sawtooth) using a rod colour match procedure (Cao, Pokorny & Smith, 2005; Cao, Pokorny, Smith & Zele, 2008a). For a 30% rod increment, a cone match required a decrease in [L/(L+M)] and an increase in [L+M] and [S/(L+M)], giving a greenish-blue and brighter appearance for probe durations of 75 ms or longer. Probe durations less than 75 ms showed an increase in [L+M] and no change in chromaticity [L/(L+M) or S/(L+M)], uggesting mediation by the MC pathway only for short duration rod stimuli. s We advance previous studies by determining the time-course and nature of photoreceptor specific retinal interactions in the three post-receptoral pathways under mesopic illumination. In the first experiment, the time-course of adaptation for ON cell processing was determined, revealing opponent cell facilitation in chromatic PC and KC pathways. The Rod-Rod and Rod-Cone data identify previously unknown interaction types that act to maintain contrast sensitivity during dynamically changing light conditions and improve the speed of light adaptation under mesopic light levels. The second experiment determined the degree of rod contribution to the inferred post-eceptoral pathways as a function of the temporal properties of the rod signal. r The understanding of the mechanisms underlying interactions between photoreceptors under mesopic illumination has implications for the study of retinal disease. Visual function has been shown to be reduced in persons with age-related maculopathy (ARM) risk genotypes prior to clinical signs of the disease (Feigl, Cao, Morris & Zele, 2011) and disturbances in rod-mediated adaptation have been shown in early phases of ARM (Dimitrov, Guymer, Zele, Anderson & Vingrys, 2008; Feigl, Brown, Lovie-Kitchin & Swann, 2005). Also, the understanding of retinal networks controlling vision enables the development of international lighting standards to optimise visual performance nder dim light levels (e.g. work-place environments, transportation).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We analyzed mesopic rod and S-cone interactions in terms of their contributions to the blue-yellow opponent pathway. Stimuli were generated using a 4-primary colorimeter. Mixed rod and S-cone modulation thresholds (constant L-, M-cone excitation) were measured as a function of their phase difference. Modulation amplitude was equated using threshold units and contrast ratios. This study identified three interaction types: (1) A linear and antagonistic rod:S-cone interaction, (2) probability summation (3) and a previously unidentified mutual nonlinear reinforcement. Linear rod:S-cone interactions occur within the blue-yellow opponent pathway. Probability summation involves signaling by different post-receptoral pathways. The origin of the nonlinear reinforcement is possibly at the photoreceptors.

Relevância:

20.00% 20.00%

Publicador: