694 resultados para CMOS processs
Resumo:
With the ability to engineer ferroelectricity in HfO2 thin films, manufacturable and highly scaled MFM capacitors and MFIS-FETs can be implemented into a CMOS-environment. NVM properties of the resulting devices are discussed and contrasted to existing perovskite based FRAM.
Resumo:
In this paper, a multi-level wordline driver scheme is presented to improve SRAM read and write stability while lowering power consumption during hold operation. The proposed circuit applies a shaped wordline voltage pulse during read mode and a boosted wordline pulse during write mode. During read, the applied shaped pulse is tuned at nominal voltage for short period of time, whereas for the remaining access time, the wordline voltage is reduced to a lower level. This pulse results in improved read noise margin without any degradation in access time which is explained by examining the dynamic and nonlinear behavior of the SRAM cell. Furthermore, during hold mode, the wordline voltage starts from a negative value and reaches zero voltage, resulting in a lower leakage current compared to conventional SRAM. Our simulations using TSMC 65nm process show that the proposed wordline driver results in 2X improvement in static read noise margin while the write margin is improved by 3X. In addition, the total leakage of the proposed SRAM is reduced by 10% while the total power is improved by 12% in the worst case scenario of a single SRAM cell. The total area penalty is 10% for a 128Kb standard SRAM array.
Resumo:
In this paper, a multi-level wordline driver scheme is presented to improve 6T-SRAM read and write stability. The proposed wordline driver generates a shaped pulse during the read mode and a boosted wordline during the write mode. During read, the shaped pulse is tuned at nominal voltage for a short period of time, whereas for the remaining access time, the wordline voltage is reduced to save the power consumption of the cell. This shaped wordline pulse results in improved read noise margin without any degradation in access time for small wordline load. The improvement is explained by examining the dynamic and nonlinear behavior of the SRAM cell. Furthermore, during the hold mode, for a short time (depending on the size of boosting capacitance), wordline voltage becomes negative and charges up to zero after a specific time that results in a lower leakage current compared to conventional SRAM. The proposed technique results in at least 2× improvement in read noise margin while it improves write margin by 3× for lower supply voltages than 0.7 V. The leakage power for the proposed SRAM is reduced by 2% while the total power is improved by 3% in the worst case scenario for an SRAM array. The main advantage of the proposed wordline driver is the improvement of dynamic noise margin with less than 2.5% penalty in area. TSMC 65 nm technology models are used for simulations.
Resumo:
This paper presents a new design approach for a rail-to-rail bulk-driven input stage using a standard single-well (n-well in this paper) CMOS technology. This input stage can provide nearly constant transconductance and constant slew rate over the entire input common-mode voltage, operating with a wide supply voltage ranging from sub 1-volt (V/sub T0/+ 3V/sub DSsat/) to the maximum allowed for the CMOS process, as well as preventing latch-up.
Resumo:
This book discusses in detail the CMOS implementation of energy harvesting. The authors describe an integrated, indoor light energy harvesting system, based on a controller circuit that dynamically and automatically adjusts its operation to meet the actual light circumstances of the environment where the system is placed. The system is intended to power a sensor node, enabling an autonomous wireless sensor network (WSN). Although designed to cope with indoor light levels, the system is also able to work with higher levels, making it an all-round light energy harvesting system. The discussion includes experimental data obtained from an integrated manufactured prototype, which in conjunction with a photovoltaic (PV) cell, serves as a proof of concept of the desired energy harvesting system. © 2016 Springer International Publishing. All rights are reserved.
Resumo:
A transimpedance amplifier (TIA) is used, in radiation detectors like the positron emission tomography(PET), to transform the current pulse produced by a photo-sensitive device into an output voltage pulse with a desired amplitude and shape. The TIA must have the lowest noise possible to maximize the output. To achieve a low noise, a circuit topology is proposed where an auxiliary path is added to the feedback TIA input, In this auxiliary path a differential transconductance block is used to transform the node voltage in to a current, this current is then converted to a voltage pulse by a second feedback TIA complementary to the first one, with the same amplitude but 180º out of phase with the first feedback TIA. With this circuit the input signal of the TIA appears differential at the output, this is used to try an reduced the circuit noise. The circuit is tested with two different devices, the Avalanche photodiodes (APD) and the Silicon photomultiplier (SIPMs). From the simulations we find that when using s SIPM with Rx=20kΩ and Cx=50fF the signal to noise ratio is increased from 59 when using only one feedback TIA to 68.3 when we use an auxiliary path in conjunction with the feedback TIA. This values where achieved with a total power consumption of 4.82mv. While the signal to noise ratio in the case of the SIPM is increased with some penalty in power consumption.
Resumo:
In this Letter a new physical model for metal-insulatormetal CMOS capacitors is presented. In the model the parameters of the circuit are derived from the physical structural details. Physical behaviors due to metal skin effect and inductance have been considered. The model has been confirmed by 3D EM simulator and design rules proposed. The model presented is scalable with capacitor geometry, allowing designers to predict and optimize quality factor. The approach has been verified for MIM CMOS capacitors
Resumo:
En el día a día del aula universitaria, se ha hecho necesario el uso de diferente material de apoyo a la docencia. Para el estudio en profundidad de la familia Mos, se ha desarrollado un libro teórico y uno de los complementos con unos programas tutores de elaboración propia que ofrecen al estudiante un nuevo punto de vista basaso en la interactividad para ayudar a comprenderlos y sirviéndose, al mismo tiempo, de tutoría y autoevaluación.
Resumo:
Este trabalho apresenta a pesquisa e o desenvolvimento da ferramenta para geração automática de leiautes WTROPIC. O WTROPIC é uma ferramenta para a geração remota, acessível via WWW, de leiautes para circuitos CMOS adequada ao projeto FUCAS e ao ambiente CAVE. O WTROPIC foi concebido a partir de otimizações realizadas na versão 3 da ferramenta TROPIC. É mostrado também, como as otimizações no leiaute do TROPIC foram implementadas e como essas otimizações permitem ao WTROPIC cerca de 10% de redução da largura dos circuitos gerados em comparação ao TROPIC. Como o TROPIC, o WTROPIC é um gerador de macro células CMOS independente de biblioteca. Apresenta-se também, como a ferramenta WTROPIC foi integrada ao ambiente de concepção de circuitos CAVE, as mudanças propostas para metodologia de integração de ferramentas do CAVE que conduzem a uma melhora na qualidade de integração e a padronização das interfaces de usuário e como a síntese física de um leiaute pode ser então realizada remotamente. Dessa maneira, obteve-se uma ferramenta para a concepção de leiautes disponível a qualquer usuário com acesso a internet, mesmo que esse usuário não disponha de uma máquina com elevada capacidade de processamento, normalmente exigido por ferramentas de CAD.
Resumo:
Esta tese propõe o desenvolvimento de um método de estimativa de capacitâncias e de potência consumida nos circuitos combinacionais CMOS, no nível de portas lógicas. O objetivo do método é fazer uma previsão do consumo de potência do circuito na fase de projeto lógico, o que permitirá a aplicação de técnicas de redução de potência ou até alteração do projeto antes da geração do seu leiaute. A potência dinâmica consumida por circuitos CMOS depende dos seguintes parâmetros: tensão de alimentação, freqüência de operação, capacitâncias parasitas e atividades de comutação em cada nodo do circuito. A análise desenvolvida na Tese, propõe que a potência seja dividida em duas componentes. A primeira componente está relacionada ao consumo de potência devido às capacitâncias intrínsecas dos transistores, que por sua vez estão relacionadas às dimensões dos transistores. Estas capacitâncias intrínsecas são concentradas nos nodos externos das portas e manifestam-se em função das combinações dos vetores de entrada. A segunda componente está relacionada às interconexões entre as células do circuito. Para esta etapa utiliza-se a estimativa do comprimento médio das interconexões e as dimensões tecnológicas para estimar o consumo de potência. Este comprimento médio é estimado em função do número de transistores e fanout das várias redes do circuito. Na análise que trata das capacitâncias intrínsecas dos transistores os erros encontrados na estimativa da potência dissipada estão no máximo em torno de 11% quando comparados ao SPICE. Já na estimativa das interconexões a comparação feita entre capacitâncias de interconexões estimadas no nível lógico e capacitâncias de interconexões extraídas do leiaute apresentou erros menores que 10%.
Resumo:
The evolution of integrated circuits technologies demands the development of new CAD tools. The traditional development of digital circuits at physical level is based in library of cells. These libraries of cells offer certain predictability of the electrical behavior of the design due to the previous characterization of the cells. Besides, different versions of each cell are required in such a way that delay and power consumption characteristics are taken into account, increasing the number of cells in a library. The automatic full custom layout generation is an alternative each time more important to cell based generation approaches. This strategy implements transistors and connections according patterns defined by algorithms. So, it is possible to implement any logic function avoiding the limitations of the library of cells. Tools of analysis and estimate must offer the predictability in automatic full custom layouts. These tools must be able to work with layout estimates and to generate information related to delay, power consumption and area occupation. This work includes the research of new methods of physical synthesis and the implementation of an automatic layout generation in which the cells are generated at the moment of the layout synthesis. The research investigates different strategies of elements disposition (transistors, contacts and connections) in a layout and their effects in the area occupation and circuit delay. The presented layout strategy applies delay optimization by the integration with a gate sizing technique. This is performed in such a way the folding method allows individual discrete sizing to transistors. The main characteristics of the proposed strategy are: power supply lines between rows, over the layout routing (channel routing is not used), circuit routing performed before layout generation and layout generation targeting delay reduction by the application of the sizing technique. The possibility to implement any logic function, without restrictions imposed by a library of cells, allows the circuit synthesis with optimization in the number of the transistors. This reduction in the number of transistors decreases the delay and power consumption, mainly the static power consumption in submicrometer circuits. Comparisons between the proposed strategy and other well-known methods are presented in such a way the proposed method is validated.
Resumo:
Tests on printed circuit boards and integrated circuits are widely used in industry,resulting in reduced design time and cost of a project. The functional and connectivity tests in this type of circuits soon began to be a concern for the manufacturers, leading to research for solutions that would allow a reliable, quick, cheap and universal solution. Initially, using test schemes were based on a set of needles that was connected to inputs and outputs of the integrated circuit board (bed-of-nails), to which signals were applied, in order to verify whether the circuit was according to the specifications and could be assembled in the production line. With the development of projects, circuit miniaturization, improvement of the production processes, improvement of the materials used, as well as the increase in the number of circuits, it was necessary to search for another solution. Thus Boundary-Scan Testing was developed which operates on the border of integrated circuits and allows testing the connectivity of the input and the output ports of a circuit. The Boundary-Scan Testing method was converted into a standard, in 1990, by the IEEE organization, being known as the IEEE 1149.1 Standard. Since then a large number of manufacturers have adopted this standard in their products. This master thesis has, as main objective: the design of Boundary-Scan Testing in an image sensor in CMOS technology, analyzing the standard requirements, the process used in the prototype production, developing the design and layout of Boundary-Scan and analyzing obtained results after production. Chapter 1 presents briefly the evolution of testing procedures used in industry, developments and applications of image sensors and the motivation for the use of architecture Boundary-Scan Testing. Chapter 2 explores the fundamentals of Boundary-Scan Testing and image sensors, starting with the Boundary-Scan architecture defined in the Standard, where functional blocks are analyzed. This understanding is necessary to implement the design on an image sensor. It also explains the architecture of image sensors currently used, focusing on sensors with a large number of inputs and outputs.Chapter 3 describes the design of the Boundary-Scan implemented and starts to analyse the design and functions of the prototype, the used software, the designs and simulations of the functional blocks of the Boundary-Scan implemented. Chapter 4 presents the layout process used based on the design developed on chapter 3, describing the software used for this purpose, the planning of the layout location (floorplan) and its dimensions, the layout of individual blocks, checks in terms of layout rules, the comparison with the final design and finally the simulation. Chapter 5 describes how the functional tests were performed to verify the design compliancy with the specifications of Standard IEEE 1149.1. These tests were focused on the application of signals to input and output ports of the produced prototype. Chapter 6 presents the conclusions that were taken throughout the execution of the work.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In this paper is presented an implementation of winner-take-all circuit using CMOS technology. In the proposed configuration the inputs are current and the outputs voltage. The simulation results show that the circuit can be a winner if its input is larger than the other by 2 mu A. The simulation also shows that the response time is 100ns at a 0.2pF load capacitance. To demonstrate the functionality of the proposed circuit, a two-input winner take all circuit was built and tested by using discrete CMOS transistor array (CD40071).