954 resultados para CALCINING TEMPERATURE


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Central to the biological function of microtubules is their ability to modify their length which occurs by addition and removal of subunits at the ends of the polymer, both in vivo and in vitro. This dynamic behavior is strongly influenced by temperature. Here, we show that the lateral interaction between tubulin subunits forming microtubule is strongly temperature dependent. Microtubules deposited on prefabricated substrates were deformed in an atomic force microscope during imaging, in two different experimental geometries. Microtubules were modeled as anisotropic, with the Young's modulus corresponding to the resistance of protofilaments to stretching and the shear modulus describing the weak interaction between the protofilaments. Measurements involving radial compression of microtubules deposited on flat mica confirm that microtubule elasticity depends on the temperature. Bending measurements performed on microtubules deposited on lithographically fabricated substrates show that this temperature dependence is due to changing shear modulus, implying that the lateral interaction between the protofilaments is strongly determined by the temperature. These measurements are in good agreement with previously reported measurements of the disassembly rate of microtubules, demonstrating that the mechanical and dynamic properties of microtubules are closely related.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

When living in sympatry with Apodemus sylvaticus and A. flavicollis, A. alpicola dominates numerically at higher altitudes. A more efficient winter thermal isolation or a higher winter thermogenic capacity procuring a physiological advantage could explain at least part of this domination. We therefore measured body temperature (Tb), oxygen consumption (VO2), wet minimal thermal conductance (C) and non shivering thermogenesis (NST) at different ambient temperatures (Ta) on winter acclimated mice of the three species, and this for the first time in A. alpicola. NST was high and C low in the three species. No significant difference could be noticed either in Tb between 5 and -10 degrees C, in VO2 measurements at a Ta of -10 degrees C or in C. The NST measurements represent, respectively, 135.2% for A. sylvaticus, 142.8% for A. flavicollis and 140.5% for A. alpicola of the expected values, the values for A. sylvaticus being significantly lower than for the other two species. The basal metabolic rates (BMR) represent 169.4% for A. sylvaticus, 161.6% for A. flavicollis and 138.3% for A. alpicola of the expected values. Having removed the effect of body weight, the BMR value was significantly lower in A. alpicola than in A. flavicollis, but no difference could be noticed between A. sylvaticus and the other two species. In conclusion, the three species of mice have very similar acclimated thermoregulatory characteristics, well adapted to cold ambient conditions. One discriminating and advantageous factor could be the lower basal metabolic rate measured in A. alpicola compared to the other two species.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To constrain deformation temperatures of mantle shear zones, we studied a strike-slip shear zone (Hilti massif, Semail ophiolite, Oman) and focused on the interaction between microstructural mechanisms and chemical equilibration processes. Quantitative microfabric analysis on harzburgites with different deformation intensity (porphyroclastic tectonite, mylonite, and ultramylonite) was combined with orthopyroxene geothermometry. The average grain size of all phases decreases with decreasing shear zone thickness. Dynamic recrystallization of porphyroclasts in combination with dissolution-precipitation and nucleation result in small-sized, chemically equilibrated pyroxenes. The composition of orthopyroxene was used to calculate deformation temperatures. In the case of the porphyroclastic tectonites, the chemical composition of orthopyroxene has been reset by diffusion yielding temperature estimates of 880-900 degrees C. The mylonites were deformed by dislocation creep of olivine and show a broad range of calculated temperatures, which result from a combination of grain size reduction and inheritance of equilibrium compositions from earlier high-temperature events and diffusion. In mylonites, diffusion profiles combined with geothermometry and grain size analysis indicate a mylonitic deformation temperature of 800-900 degrees C possibly followed by diffusion. In ultramylonites, the smallest grains (<30 mu m) reveal equilibration at temperatures of similar to 700 degrees C during the last stages of ductile deformation, which was dominated by diffusion creep of olivine. Our results provide a crucial link between temperature and evolution of microstructures from dislocation creep to diffusion creep in mantle shear zones.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent research, both soil (root-zone) and air temperature have been used as predictors for the treeline position worldwide. In this study, we intended to (a) test the proposed temperature limitation at the treeline, and (b) investigate effects of season length for both heat sum and mean temperature variables in the Swiss Alps. As soil temperature data are available for a limited number of sites only, we developed an air-to-soil transfer model (ASTRAMO). The air-to-soil transfer model predicts daily mean root-zone temperatures (10cm below the surface) at the treeline exclusively from daily mean air temperatures. The model using calibrated air and root-zone temperature measurements at nine treeline sites in the Swiss Alps incorporates time lags to account for the damping effect between air and soil temperatures as well as the temporal autocorrelations typical for such chronological data sets. Based on the measured and modeled root-zone temperatures we analyzed. the suitability of the thermal treeline indicators seasonal mean and degree-days to describe the Alpine treeline position. The root-zone indicators were then compared to the respective indicators based on measured air temperatures, with all indicators calculated for two different indicator period lengths. For both temperature types (root-zone and air) and both indicator periods, seasonal mean temperature was the indicator with the lowest variation across all treeline sites. The resulting indicator values were 7.0 degrees C +/- 0.4 SD (short indicator period), respectively 7.1 degrees C +/- 0.5 SD (long indicator period) for root-zone temperature, and 8.0 degrees C +/- 0.6 SD (short indicator period), respectively 8.8 degrees C +/- 0.8 SD (long indicator period) for air temperature. Generally, a higher variation was found for all air based treeline indicators when compared to the root-zone temperature indicators. Despite this, we showed that treeline indicators calculated from both air and root-zone temperatures can be used to describe the Alpine treeline position.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

1. Severe environmental conditions filter community species compositions, forming clines of functional diversity along environmental gradients. Here, the changes in functional diversity in ant assemblages with severe environmental conditions in the Swiss Alps were investigated. 2. Eight sites were sampled along an elevation gradient (1800-2550 m). The variation in functional diversity was analysed along an elevation gradient considering four traits: social structure (monogynous vs. polygynous), worker size, pupal development, and nest structure. 3. Ant species richness and functional diversity decreased with decreasing temperature. Species found in colder habitats tended to live in subterranean nests rather than in mounds and exhibit a polymorphism in queen number, either within or across populations. The phylogenetic diversity did not decrease at colder temperature: Formicinae and Myrmicinae occupied the full range of elevations investigated. 4. An insulation experiment indicated that mounds are more thermally insulated against the cold compared with soil. The absence of a mound-building ant from high elevations probably results from a reduction in the amount of vegetal materials provided by coniferous trees. 5. More severe abiotic conditions at higher elevations act as a filter on ant assemblages, directly through physiological tolerances to the abiotic conditions and indirectly as the vegetation necessary for nest building shifts with elevation.</list-item

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This is a participant study, quasi-experimental, of a before and after type. A quantitative approach of biophysiological measures was used, represented by the saturation of oxygen measured by pulse oximeter (SpO2), and recorded on three occasions: before, during and after the bedbath in critically ill patients hospitalized at the ICU of a University Hospital in Brazil. Objective: to compare the SpO2 in various stages of the bath, with and without control of water temperature. Data collection was performed between December 2007 and April 2008 on a convenience sample consisting of 30 patients aged over 18 who had classification in TISS-28 from level II. Results show that water temperature control means a lower variation of SpO2 (p<0.05). No marked differences in variation of saturation between men and women or between age groups were established. In conclusion, heated and constant water temperature during the bedbath is able to minimize the fall of SpO2 that occurs while handling patients during procedures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Traits that mediate species interactions are evolutionarily shaped by biotic and abiotic drivers, yet we know relatively little about the relative importance of these factors. Herbivore pressure, along with resource availability and third-party' mutualists, are hypothesized to play a major role in the evolution of plant defence traits. Here, we used the model system Plantago lanceolata, which grows along steep elevation gradients in the Swiss Alps, to investigate the effect of elevation, herbivore pressure, mycorrhizal inoculation and temperature on plant resistance. Over a 1200 m elevation gradient, the levels of herbivory and iridoid glycosides (IGs) declined with increasing elevation. By planting seedlings at three different elevations, we further showed that both low-elevation growing conditions and mycorrhizal inoculation resulted in increased plant resistance to herbivores. Finally, using a temperature-controlled experiment comparing high- and low-elevation ecotypes, we showed that high-elevation ecotypes are less resistant to herbivory, and that lower temperatures impair IGs deployment after herbivore attack. We thus propose that both lower herbivore pressure, and colder temperatures relax the defense syndrome of high elevation plants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Variation in temperature affects the biology of sea turtles at a range of scales. To elucidate the drivers of seasonality of nesting and duration of season, databases across four species of sea turtles (Caretta caretta n=37, Chelonia mydas n=64, Dermochelys coriacea n=44 and Eretmochelys imbricata n=36) at a global scale were created. By using remotely sensed sea surface temperature data, thermal profiles across the nesting season were generated. Duration of nesting season was correlated with latitude in all species but was more tightly coupled with temperature; seasons were significantly longer with increased mean SST. In general, nesting seasonality occurred at warmest time of the year. SST for the month before, month after and the month of peak nesting significantly affected the month of peak nesting.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a comparative analysis of satellite derived climatologies in the Cape Verde region (CV). In order to establish chlorophyll a variability, in relation to other oceanographic phenomena, a set of, relatively long (from five to eight years), time series of chlorophyll a, sea surface temperature, wind and geostrophic currents, were ensembled for the Eastern Central Atlantic (ECA). We studied seasonal and inter-annual variability of phytoplankton concentration, in relation to the rest of the variables, with a special focus in CV. We compared the situation within the archipelago with those of the surrounding marine environments, such as the North West African Upwelling (NWAU), North Atlantic Subtropical Gyre (NASTG), North Equatorial Counter Current (NECC) and Guinea Dome (GD). At the seasonal scale, CV region behaves partly as the surrounding areas, nevertheless, some autochthonous features were also found. The maximum peak of the pigment having a positive correlation with temperature is found at the end of the year for all the points in the archipelago; a less remarkable rise with negative correlation is also detected in February for points CV2 and CV4. This is behavior that none of the surrounding environments have shown. This enrichment was found to be preceded by a drastic drop in wind intensity (SW Monsoon) during summer months. The inter-annual analysis shows a tendency for decreasing of the chlorophyll a concentration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a comparative analysis of satellite derived climatologies in the Cape Verde region (CV). In order to establish chlorophyll a variability, in relation to other oceanographic phenomena, a set of, relatively long (from five to eight years), time series of chlorophyll a, sea surface temperature, wind and geostrophic currents, were ensembled for the Eastern Central Atlantic (ECA). We studied seasonal and inter-annual variability of phytoplankton concentration, in relation to the rest of the variables, with a special focus in CV. We compared the situation within the archipelago with those of the surrounding marine environments, such as the North West African Upwelling (NWAU), North Atlantic Subtropical Gyre (NASTG), North Equatorial Counter Current (NECC) and Guinea Dome (GD). At the seasonal scale, CV region behaves partly as the surrounding areas, nevertheless, some autochthonous features were also found. The maximum peak of the pigment having a positive correlation with temperature is found at the end of the year for all the points in the archipelago; a less remarkable rise with negative correlation is also detected in February for points CV2 and CV4. This is behavior that none of the surrounding environments have shown. This enrichment was found to be preceded by a drastic drop in wind intensity (SW Monsoon) during summer months. The inter-annual analysis shows a tendency for decreasing of the chlorophyll a concentration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dynamics of the control of Aedes (Stegomyia) aegypti Linnaeus, (Diptera, Culicidae) by Bacillus thuringiensis var israelensis has been related with the temperature, density and concentration of the insecticide. A mathematical model for biological control of Aedes aegypti with Bacillus thuringiensis var israelensis (Bti) was constructed by using data from the literature regarding the biology of the vector. The life cycle was described by differential equations. Lethal concentrations (LC50 and LC95) of Bti were determined in the laboratory under different experimental conditions. Temperature, colony, larvae density and bioinsecticide concentration presented marked differences in the analysis of the whole set of variables; although when analyzed individually, only the temperature and concentration showed changes. The simulations indicated an inverse relationship between temperature and mosquito population, nonetheless, faster growth of populations is reached at higher temperatures. As conclusion, the model suggests the use of integrated control strategies for immature and adult mosquitoes in order to achieve a reduction of Aedes aegypti.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In short space of time increase in temperature and rainfall can affect vector populations and, consequently, the diseases for them transmitted. The present study analyzed the effect of small temperature and humidity variations on the fecundity, fertility and survival of Aedes aegypti. These parameters were analyzed using individual females at temperatures ranging from 23 to 27 °C (mean 25 °C); 28 to 32 °C (mean 30 °C) and 33 to 37 °C (mean 35 ºC) associated to 60±8% and 80±6% relative humidity. Females responded to an increase in temperature by reducing egg production, oviposition time and changing oviposition patterns. At 25 ºC and 80% relative humidity, females survived two-fold more and produced 40% more eggs when compared to those kept at 35 ºC and 80% relative humidity. However, in 45% of females kept at 35 ºC and 60% relative humidity oviposition was inhibited and only 15% females laid more than 100 eggs, suggesting that the intensity of the temperature effect was influenced by humidity. Gradual reductions in egg fertility at 60% relative humidity were observed with the increase in temperature, although such effect was not found in the 80% relative humidity at 25 º C and 30 º C. These results suggest that the reduction in population densities recorded in tropical areas during seasons when temperatures reach over 35 ºC is likely to be strongly influenced by temperature and humidity, with a negative effect on several aspects of mosquito biology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PREMISE OF THE STUDY: Numerous long-term studies in seasonal habitats have tracked interannual variation in first flowering date (FFD) in relation to climate, documenting the effect of warming on the FFD of many species. Despite these efforts, long-term phenological observations are still lacking for many species. If we could forecast responses based on taxonomic affinity, however, then we could leverage existing data to predict the climate-related phenological shifts of many taxa not yet studied. METHODS: We examined phenological time series of 1226 species occurrences (1031 unique species in 119 families) across seven sites in North America and England to determine whether family membership (or family mean FFD) predicts the sensitivity of FFD to standardized interannual changes in temperature and precipitation during seasonal periods before flowering and whether families differ significantly in the direction of their phenological shifts. KEY RESULTS: Patterns observed among species within and across sites are mirrored among family means across sites; early-flowering families advance their FFD in response to warming more than late-flowering families. By contrast, we found no consistent relationships among taxa between mean FFD and sensitivity to precipitation as measured here. CONCLUSIONS: Family membership can be used to identify taxa of high and low sensitivity to temperature within the seasonal, temperate zone plant communities analyzed here. The high sensitivity of early-flowering families (and the absence of early-flowering families not sensitive to temperature) may reflect plasticity in flowering time, which may be adaptive in environments where early-season conditions are highly variable among years.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Report produced by the The Department of Agriculture and Land Stewardship, Climatology Bureau.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This poster shows how to efficiently observe high-frequency figures of merit in RF circuits by measuring DC temperature with CMOS-compatible built-in sensors.