891 resultados para Business Intelligence, BI Mobile, OBI11g, Decision Support System, Data Warehouse


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Children are an especially vulnerable population, particularly in respect to drug administration. It is estimated that neonatal and pediatric patients are at least three times more vulnerable to damage due to adverse events and medication errors than adults are. With the development of this framework, it is intended the provision of a Clinical Decision Support System based on a prototype already tested in a real environment. The framework will include features such as preparation of Total Parenteral Nutrition prescriptions, table pediatric and neonatal emergency drugs, medical scales of morbidity and mortality, anthropometry percentiles (weight, length/height, head circumference and BMI), utilities for supporting medical decision on the treatment of neonatal jaundice and anemia and support for technical procedures and other calculators and widespread use tools. The solution in development means an extension of INTCare project. The main goal is to provide an approach to get the functionality at all times of clinical practice and outside the hospital environment for dissemination, education and simulation of hypothetical situations. The aim is also to develop an area for the study and analysis of information and extraction of knowledge from the data collected by the use of the system. This paper presents the architecture, their requirements and functionalities and a SWOT analysis of the solution proposed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The occurrence of Barotrauma is identified as a major concern for health professionals, since it can be fatal for patients. In order to support the decision process and to predict the risk of occurring barotrauma Data Mining models were induced. Based on this principle, the present study addresses the Data Mining process aiming to provide hourly probability of a patient has Barotrauma. The process of discovering implicit knowledge in data collected from Intensive Care Units patientswas achieved through the standard process Cross Industry Standard Process for Data Mining. With the goal of making predictions according to the classification approach they several DM techniques were selected: Decision Trees, Naive Bayes and Support Vector Machine. The study was focused on identifying the validity and viability to predict a composite variable. To predict the Barotrauma two classes were created: “risk” and “no risk”. Such target come from combining two variables: Plateau Pressure and PCO2. The best models presented a sensitivity between 96.19% and 100%. In terms of accuracy the values varied between 87.5% and 100%. This study and the achieved results demonstrated the feasibility of predicting the risk of a patient having Barotrauma by presenting the probability associated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

About 90% of breast cancers do not cause or are capable of producing death if detected at an early stage and treated properly. Indeed, it is still not known a specific cause for the illness. It may be not only a beginning, but also a set of associations that will determine the onset of the disease. Undeniably, there are some factors that seem to be associated with the boosted risk of the malady. Pondering the present study, different breast cancer risk assessment models where considered. It is our intention to develop a hybrid decision support system under a formal framework based on Logic Programming for knowledge representation and reasoning, complemented with an approach to computing centered on Artificial Neural Networks, to evaluate the risk of developing breast cancer and the respective Degree-of-Confidence that one has on such a happening.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação de mestrado em Systems Engineering

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação de mestrado integrado em Engenharia e Gestão de Sistemas de Informação

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação de mestrado integrado em Engenharia e Gestão de Sistemas de Informação

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Healthcare organizations often benefit from information technologies as well as embedded decision support systems, which improve the quality of services and help preventing complications and adverse events. In Centro Materno Infantil do Norte (CMIN), the maternal and perinatal care unit of Centro Hospitalar of Oporto (CHP), an intelligent pre-triage system is implemented, aiming to prioritize patients in need of gynaecology and obstetrics care in two classes: urgent and consultation. The system is designed to evade emergency problems such as incorrect triage outcomes and extensive triage waiting times. The current study intends to improve the triage system, and therefore, optimize the patient workflow through the emergency room, by predicting the triage waiting time comprised between the patient triage and their medical admission. For this purpose, data mining (DM) techniques are induced in selected information provided by the information technologies implemented in CMIN. The DM models achieved accuracy values of approximately 94% with a five range target distribution, which not only allow obtaining confident prediction models, but also identify the variables that stand as direct inducers to the triage waiting times.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

El projecte tracte d' implementar una solució de Business Intelligence sota la plataforma Microsoft.Aquest projecte va destinat al Departament de Comptabilitat de l' Ajuntament de Cambrils, i està relacionat amb la funció del control de les despeses i els ingressos

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND Functional brain images such as Single-Photon Emission Computed Tomography (SPECT) and Positron Emission Tomography (PET) have been widely used to guide the clinicians in the Alzheimer's Disease (AD) diagnosis. However, the subjectivity involved in their evaluation has favoured the development of Computer Aided Diagnosis (CAD) Systems. METHODS It is proposed a novel combination of feature extraction techniques to improve the diagnosis of AD. Firstly, Regions of Interest (ROIs) are selected by means of a t-test carried out on 3D Normalised Mean Square Error (NMSE) features restricted to be located within a predefined brain activation mask. In order to address the small sample-size problem, the dimension of the feature space was further reduced by: Large Margin Nearest Neighbours using a rectangular matrix (LMNN-RECT), Principal Component Analysis (PCA) or Partial Least Squares (PLS) (the two latter also analysed with a LMNN transformation). Regarding the classifiers, kernel Support Vector Machines (SVMs) and LMNN using Euclidean, Mahalanobis and Energy-based metrics were compared. RESULTS Several experiments were conducted in order to evaluate the proposed LMNN-based feature extraction algorithms and its benefits as: i) linear transformation of the PLS or PCA reduced data, ii) feature reduction technique, and iii) classifier (with Euclidean, Mahalanobis or Energy-based methodology). The system was evaluated by means of k-fold cross-validation yielding accuracy, sensitivity and specificity values of 92.78%, 91.07% and 95.12% (for SPECT) and 90.67%, 88% and 93.33% (for PET), respectively, when a NMSE-PLS-LMNN feature extraction method was used in combination with a SVM classifier, thus outperforming recently reported baseline methods. CONCLUSIONS All the proposed methods turned out to be a valid solution for the presented problem. One of the advances is the robustness of the LMNN algorithm that not only provides higher separation rate between the classes but it also makes (in combination with NMSE and PLS) this rate variation more stable. In addition, their generalization ability is another advance since several experiments were performed on two image modalities (SPECT and PET).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

RÉSUMÉ Contexte : Peu d'études ont examiné la façon dont les médecins appréhendent les guidelines, et encore moins celle dont ils perçoivent de tels guidelines disponibles sur Internet. Cette étude évalue l'acceptation par les médecins d'un guideline électronique portant sur l'adéquation de la colonoscopie. Méthode : Des gastroentérologues participant à une étude observationnelle internationale ont consulté un guideline électronique pour une série consécutive de patients adressés pour une colonoscopie. Le guideline a été élaboré par le Panel Européen sur l'Adéquation de l'Endoscopie Gastro-intestinale (EPAGE en version anglaise), utilisant une méthode validée (RAND). Les opinions des médecins sur le guideline, sur le site Internet et sur les perspectives d'utilisation ont été recueillies au moyen de questionnaires. Résultats : 289 patients ont été inclus dans l'étude. Le temps moyen pour consulter le site Internet a été de 1.8 min et 86% des médecins l'ont considéré comme simple à utiliser. Les recommandations ont été facilement localisées pour 82% des patients et les médecins étaient d'accord avec l'adéquation de la colonoscopie dans 86% des cas. Selon les critères EPAGE, la colonoscopie était appropriée, incertaine et inappropriée, respectivement chez 59, 28 et 13% des patients. Conclusions : Le guideline EPAGE a été considéré comme acceptable et simple à utiliser. L'utilisation, l'utilité et la pertinence du site Internet a été jugée comme acceptable. Son utilisation effective dépendra cependant de la levée de certains obstacles au niveau organisationnel et culturel.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Immobile location-allocation (LA) problems is a type of LA problem that consists in determining the service each facility should offer in order to optimize some criterion (like the global demand), given the positions of the facilities and the customers. Due to the complexity of the problem, i.e. it is a combinatorial problem (where is the number of possible services and the number of facilities) with a non-convex search space with several sub-optimums, traditional methods cannot be applied directly to optimize this problem. Thus we proposed the use of clustering analysis to convert the initial problem into several smaller sub-problems. By this way, we presented and analyzed the suitability of some clustering methods to partition the commented LA problem. Then we explored the use of some metaheuristic techniques such as genetic algorithms, simulated annealing or cuckoo search in order to solve the sub-problems after the clustering analysis

Relevância:

100.00% 100.00%

Publicador:

Resumo:

El presente proyecto consiste en la implantación de un sistema destinado a la gestión empresarial en el que se complementa el actual ERP con un sistema Business Intelligence.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction Preventing drug incompatibilities has a high impact onthe safety of drug therapy. Although there are no internationalguidelines to manage drug incompatibilities, different decision-supporttools such as handbooks, cross-tables and databases are available.In a previous study, two decision-support tools have been pre-selectedby pharmacists as fitting nurses' needs on the wards1. The objective ofthis study was to have these both tools evaluated by nurses todetermine which would be the most suitable for their daily practice.Materials & Methods Evaluated tools were:1. Cross-table of drug pairs (http://files.chuv.ch/internet-docs/pha/medicaments/pha_phatab_compatibilitessip.pdf)2. Colour-table (a colour for each drug according to the pH: red =acid; blue = basic; yellow = neutral; black = to be infused alone)2Tools were assessed by 48 nurses in 5 units (PICU, adult andgeriatric intensive care, surgery, onco-hematology) using a standardizedform1. The scientific accuracy of the tools was evaluated bydetermining the compatibility of five drugs pairs (rate of correctanswers according to the Trissel's Handbook on Injectable Drugs,chi-square test). Their ergonomics, design, reliability and applicabilitywere estimated using visual analogue scales (VAS 0-10; 0 =null, 10 = excellent). Results are expressed as the median and interquartilerange (IQR) for 25% and 75% (Wilcoxon rank sum test).Results The rate of correct answers was above 90% for both tools(cross-table 96.2% vs colour-table 92.5%, p[0.05).The ergonomics and the applicability were higher for the crosstable[7.1 (IQR25 4.0, IQR75 8.0) vs 5.0 (IQR25 2.7, IQR75 7.0), p =0.025 resp. 8.3 (IQR25 7.4, IQR75 9.2) vs 7.6 (IQR25 5.9, IQR75 8.8)p = 0.047].The design of the colour-table was judged better [4.6 (IQR25 2.9,IQR75 7.1) vs 7.1 (IQR25 5.4, IQR75 8.4) p = 0.002].No difference was observed in terms of reliability [7.3 (IQR25 6.5,IQR75 8.4) vs 6.7 (IQR25 5.0, IQR758.6) p[0.05].The cross-table was globally preferred by 65% of the nurses (27%colour-table, 8% undetermined) and 68% would like to have thisdecision-support tool available for their daily practice.Discussion & Conclusion Both tools showed the same accuracy toassess drug compatibility. In terms of ergonomics and applicabilitythe cross-table was better than the colour-table, and was preferred bythe nurses for their daily practice. The cross-table will be implementedin our hospital as decision-support tool to help nurses tomanage drug incompatibilities.

Relevância:

100.00% 100.00%

Publicador: