943 resultados para Bovine Embryos
Resumo:
Coagulase-negative staphylococci (CNS) are the most common bacteria isolated in bovine subclinical mastitis in many countries, and also a frequent cause of clinical mastitis. The most common species isolated are Staphylococcus (S) chromogenes, S. simulans, S. epidermidis, and S. xylosus. One half of the intramammary infections (IMI) caused by CNS persist in the udder. The pathogenesis of IMI caused by CNS is poorly understood. This dissertation focuses on host response in experimental intramammary infection induced by S. chromogenes, S. epidermidis and S. simulans. Model for a mild experimental CNS infection was developed with S. chromogenes (study I). All cows were infected and most developed subclinical mastitis. In study II the innate immune response to S. epidermidis and S. simulans IMI was compared in eight cows using a crossover design. A larger dose of bacteria was used to induce clinical mastitis. All cows became infected and showed mild to moderate clinical signs of mastitis. S. simulans caused a slightly stronger innate immune response than S. epidermidis, with significantly higher concentrations of the interleukins IL-1beta and IL-8 in the milk. The spontaneous elimination rate of the 16 IMIs was 31%, with no difference between species. No significant differences were recorded between infections eliminated spontaneously or remaining persistent, although the response was stronger in IMIs eliminated spontaneously, except the concentration of TNF-α, which remained elevated in persistent infections. Lactoferrin (Lf) is a component of the humoral defence of the host and is present at low concentrations in the milk. The concentration of Lf in milk is high during the dry period, in colostrum, and in mastitic milk. The effect of an inherent, high concentration of Lf in the milk on experimental IMI induced with S. chromogenes was studied in transgenic cows that expressed recombinant human Lf in their milk. Human Lf did not prevent S. chromogenes IMI, but the host response was milder in transgenic cows than in normal cows, and the former eliminated infection faster. Biofilm production has been suggested to promote persistence of IMI. Phenotypic biofilm formation and slime producing ability of CNS isolates from bovine mastitis was investigated in vitro. One-third of mastitis isolates produced biofilm. Slime production was less frequent for isolates of the most common mastitis causing species S. chromogenes and S. simulans compared with S. epidermidis. No association was found between the phenotypic ability to form biofilm and the persistence of IMI or severity of mastitis. Slime production was associated with persistent infections, but only 8% of isolates produced slime.
Resumo:
The nucleotide sequence of genes 4 and 9, encoding the outer capsid proteins VP4 and VP7 of a serotype 10 tissue culture-adapted strain, 1321, representative of asymptomatic neonatal rotaviruses isolated from neonates in Bangalore, India, were determined. Comparison of nucleotide and deduced amino acid sequences of 1321 VP4 and VP7 with previously published sequences of various serotypes revealed that both genes were highly homologous to the respective genes of serotype 10 bovine rotavirus, B223. The VP4 of 1321 represents a new human P serotype and the 1321 and related strains represent the first description of neonatal rotaviruses that appear to derive both surface proteins from an animal rotavirus.
Resumo:
Chorionic gonadotrophin (CG) is the first clear embryonic signal during early pregnancy in primates. CG has close structural and functional similarities to pituitary luteinizing hormone (LH) which is regulated by gonadotrophin releasing hormone (GnRH). To study the regulatory mechanism of CG secretion in primate embryos, we examined the production and timing of secretion of GnRH in peri-implantation embryos of the rhesus monkey. In-vivo fertilized/developed morulae and early blastocysts, recovered from non-superovulated, naturally-bred rhesus monkeys by non-surgical uterine flushing, were cultured in vitro to hatched, attached and post-attached blastocyst stages using a well-established culture system. We measured GnRH and CG in media samples from cultured embryos with a sensitive radioimmunoassay and bioassay, respectively. The secretion of GnRH (pg/ml; mean +/- SEM) by embryos (n = 20) commenced from low levels (0.32 +/- 0.05) during the pre-hatching blastocyst stage to 0.70 +/- 0.08 at 6-12 days and 1.30 +/- 0.23 at greater than or equal to 13 days of hatched blastocyst attachment and proliferation of trophoblast cells. GnRH concentrations in culture media obtained from embryos (n = 5) that failed to hatch and attach were mostly undetectable (less than or equal to 0.1). Samples that did not contain detectable GnRH failed to show detectable CG. Immunocytochemical studies, using a specific monoclonal anti-GnRH antibody (HU4H) as well as polyclonal antisera (LR-1), revealed that immunopositive GnRH cells were localized in pre-hatching blastocysts (n = 4), in blastocysts (n = 2) after 5-10 days of attachment and in monolayer cultures (n = 4) of well-established embryonic trophoblast cells. GnRH positive staining was seen only in cytotrophoblasts but not in syncytiotrophoblasts. Similarly, cytotrophoblast, but not syncytiotrophoblast, cells of the rhesus placenta were immunopositive. In controls, either in the absence of antibody or in the presence of antibody pre-absorbed with GnRH, these cells failed to show stain. These observations indicate, for the first time, that an immunoreactive GnRH is produced and secreted by blastocysts during the peri-attachment period and by embryo-derived cytotrophoblast cells in the rhesus monkey.
Resumo:
Angiogenin is a protein belonging to the superfamily of RNase A. The RNase activity of this protein is essential for its angiogenic activity. Although members of the RNase A family carry out RNase activity, they differ markedly in their strength and specificity. In this paper, we address the problem of higher specificity of angiogenin towards cytosine against uracil in the first base binding position. We have carried out extensive nano-second level molecular dynamics(MD) computer simulations on the native bovine angiogenin and on the CMP and UMP complexes of this protein in aqueous medium with explicit molecular solvent. The structures thus generated were subjected to a rigorous free energy component analysis to arrive at a plausible molecular thermodynamic explanation for the substrate specificity of angiogenin.
Resumo:
SecB is a homotetrameric cytosolic chaperone that forms part of the protein translocation machinery in E. coli. Due to SecB, nascent polypeptides are maintained in an unfolded translocation-competent state devoid of tertiary structure and thus are guided to the translocon. In vitro SecB rapidly binds to a variety of ligands in a non-native state. We have previously investigated the bound state conformation of the model substrate bovine pancreatic trypsin inhibitor (BPTI) as well as the conformation of SecB itself by using proximity relationships based on site-directed spin labeling and pyrene fluorescence methods. It was shown that SecB undergoes a conformational change during the process of substrate binding. Here, we generated SecB mutants containing but a single cysteine per subunit or an exposed highly reactive new cysteine after removal of the nearby intrinsic cysteines. Quantitative spin labeling was achieved with the methanethiosulfonate spin label (MTS) at positions C97 or E90C, respectively. Highfield (W-band) electron paramagnetic resonance (EPR) measurements revealed that with BPTI present the spin labels are exposed to a more polar/hydrophilic environment. Nanoscale distance measurements with double electron-electron resonance (DEER) were in excellent agreement with distances obtained by molecular modeling. Binding of BPTI also led to a slight change in distances between labels at C97 but not at E90C. While the shorter distance in the tetramer increased, the larger diagonal distance decreased. These findings can be explained by a widening of the tetrameric structure upon substrate binding much like the opening of two pairs of scissors.
Resumo:
This research paper presents the first results on the protein adsorption and release kinetics and in vitro biodegradability of cryogenically cured hydroxyapatite-gelatin based micro/macroporous scaffolds (CHAMPS). While the adsorption and release of bovine serum albumin (BSA) protein exhibits steady state behavior over an incubation period of up to 10 days, Fourier transform infrared (FT-IR) analysis importantly confirms the absence of any change in the secondary structure of BSA proteins due to interaction with the CHAMPS scaffold. The compression properties of the CHAMPS scaffold with interconnected porosity (pore size similar to 50-200 mm) is characterized by a non-linear stress-strain response with a strength close to 5 MPa and a maximum strain of up to 24%. The slow but systematic increase in weight loss over a period of 7 days as well as apatite layer formation indicates its good bioactivity. The extensive micro-computed tomography (micro-CT) analysis establishes cancellous bone-like highly interconnected and complex porous architecture of the CHAMPS scaffold. Importantly, the excellent adsorption (up to 50%) and release (up to 60% of adsorbed protein) of BSA has been uniquely attributed to the inherent porous microstructure of the CHAMPS scaffold. Overall, the present study provides an assessment of the interaction of protein with the gelatin-hydroxyapatite macroporous scaffold in vitro, as well as reporting for the first time the efficacy of such scaffolds to release 60% of BSA loaded onto the scaffold in vitro, which is significantly higher than earlier literature reports.
Resumo:
Damaged articulating joints can be repaired or replaced with synthetic biomaterials, which can release wear debris due to articulation, leading to the osteolysis. In a recent work, it has been shown that it is possible to achieve a better combination of flexural strength/fracture toughness as well as in vitro bioactivity and cytocompatibility properties in spark plasma sintered hydroxyapatite-titanium (HA-Ti) composites. Although hydroxyapatite and titanium are well documented for their good biocompatibility, nanosized hydroxyapatite (HA) and titanium (Ti) particles can cause severe toxicity to cells. In order to address this issue, fretting wear study of HA-Ti composites under dry and wet (1x SBF, supplemented with 5 g l(-1) bovine serum albumin (BSA)) condition was performed to assess the wear resistance as well as wear debris formation, in vitro. The experimental results reveal one order of magnitude lower wear rate for HA-10 wt% Ti (7.5 x 10(-5) mm(3) N-1 m(-1)) composite than monolithic HA (3.9 x 10(-4) mm(3) N-1 m(-1)) in simulated body fluid. The difference in the tribological properties has been analyzed in the light of phase assemblages and mechanical properties. Overall, the results suggest the potential use of HA-Ti composites over existing HA-based biocomposites in orthopedic as well as dental applications.
Resumo:
Arterial walls have a regular and lamellar organization of elastin present as concentric fenestrated networks in the media. In contrast, elastin networks are longitudinally oriented in layers adjacent to the media. In a previous model exploring the biomechanics of arterial elastin, we had proposed a microstructurally motivated strain energy function modeled using orthotropic material symmetry. Using mechanical experiments, we showed that the neo-Hookean term had a dominant contribution to the overall form of the strain energy function. In contrast, invariants corresponding to the two fiber families had smaller contributions. To extend these investigations, we use biaxial force-controlled experiments to quantify regional variations in the anisotropy and nonlinearity of elastin isolated from bovine aortic tissues proximal and distal to the heart. Results from this study show that tissue nonlinearity significantly increases distal to the heart as compared to proximally located regions (). Distally located samples also have a trend for increased anisotropy (), with the circumferential direction stiffer than the longitudinal, as compared to an isotropic and relatively linear response for proximally located elastin samples. These results are consistent with the underlying tissue histology from proximally located samples that had higher optical density (), fiber thickness (), and trend for lower tortuosity () in elastin fibers as compared to the thinner and highly undulating elastin fibers isolated from distally located samples. Our studies suggest that it is important to consider elastin fiber orientations in investigations that use microstructure-based models to describe the contributions of elastin and collagen to arterial mechanics.
Competitive adsorption between bovine serum albumin and collagen observed by atomic force microscope
Resumo:
Atomic force microscopy (AFM) was used to study the competitive adsorption between bovine serum albumin (BSA) and type I collagen on hydrophilic and hydrophobic silicon wafers. BSA showed a grain shape and the type I collagen displayed fibril-like molecules with relatively homogeneous height and width, characterized with clear twisting (helical formation). These AFM images illustrated that quite a lot of type I collagen appeared in the adsorption layer on hydrophilic surface in a competitive adsorption state, but the adsorption of BSA was more preponderant than that of type I collagen on hydrophobic silicon wafer surface. The experiments showed that the influence of BSA on type I collagen adsorption on hydrophilic surface was less than that on hydrophobic surface.
Resumo:
The competitive adsorption of collagen and bovine serum albumin (BSA) on surfaces with varied wettability was investigated with imaging ellipsometry, and ellipsometry. Silane modified silicon surfaces were used as substrates. The results showed that surface wettability had an important effect on protein competitive adsorption. With the decrease of surface wettability, the adsorption of collagen from the mixture solution of collagen and BSA decreased, while the adsorption of BSA increased. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Two previously reported DNA polymorphisms of sterol regulatory element binding transcription factor 1 (SREBP1) and liver X receptor alpha (LXRα) and two DNA polymorphisms of fatty acid desaturase 1 (FADS1) were evaluated for associations with fatty acids in brisket adipose tissue of Canadian cross-bred beef steers. The polymorphism of 84 bp insert/deletion in intron 5 of SREBP1 was significantly associated with the concentration of 9c C17:1 (P=0.013). The G>A single nucleotide polymorphism (SNP) in the exon 4 of LXRα gene was associated with the concentration of 9c, 11t C18:2 (P=0.04), sum of conjugated linoleic acids (CLA) (P=0.025) and 11c C20:1(P=0.042). Two DNA polymorphisms in the promoter region of FADS1, deletion/insertion of ->GTG in rs133053720 and SNP A>G in rs42187276, were significantly associated with concentrations of C17:0 iso, C17:0 ai, total branched chain fatty acids (BFA), 12t C18:1, 13t/14t C18:1, 15t C18:1, and 13c C18:1 (P<0.05). Further studies are needed to validate the associations and to delineate the roles of the gene polymorphisms in determining the fatty acid composition in beef tissues.