895 resultados para Boron trifluoride.
Resumo:
The effect of boron (B) on cotton growth and fruit shedding may be due not only to physiological or biochemical effects, but also to vascular tissue malformation. This experiment investigated petiole and floral peduncle anatomical alterations and growth of cotton supplied with deficient and sufficient B in nutrient solution. Cotton (Gossypium hirsutum cv. 'Delta Opal') plants were grown in solutions containing 0, 1.5, 3.0, 4.5, and 6.0 mu mol L-1 of B from 22 to 36 d after plant emergence (DAPE). From 36 to 51 DAPE, B was omitted from the nutrient solution. Petioles from young leaves and floral bud peduncles (first position of the first sympodial) were sampled and the cross-section anatomy observed under an optical microscope. The number of vascular bundles of the petiole was decreased in B-deficient plants and the xylem was disorganized. Phloem elements in the peduncle vascular cylinder of B-deficient plants did not show clear differentiation. The few xylem elements that were formed were also disorganized. Modifications caused by B deficiency may have impaired B and photosynthate translocation into new cotton growth. Boron accumulation in the shoot of B-deficient plants suggested that there was some B translocation within the plant. It could be inferred that cotton growth would be impaired by the decrease in carbohydrate translocation rather than by B deficiency in the tissue alone.
Resumo:
Field emission properties of hot filament chemical vapor deposited boron doped polycrystalline diamond have been studied. Doping level (N-B) of different samples has been varied by the B/C concentration in the gas feed during the growth process and doping saturation has been observed for high B/C ratios. Threshold field (E-th) for electron emission as function of B/C concentration has been measured, and the influences of grain boundaries, doping level and surface morphology on field emission properties have been investigated. Carrier transport through conductive grains and local emission properties of surface sites have been figured out to be two independent limiting effects in respect of field emission. Emitter current densities of 500 nA cm(-2) were obtained using electric fields less than 8 V/mu m. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
The knowledge of nutrient mobility is an important tool to define the best fertilizer management and diagnosis techniques. Patterns of boron (B) mobility in plants have been reviewed, but there is very little information on B distribution and mobility in cotton. An experiment was conducted to study plant growth and B distribution in cotton when the nutrient was applied in the nutrient solution or to the leaves, and when a temporary deficiency was imposed. Cotton (Gossypium hirsutum, Latifolia, cv. IAC 22) was grown in nutrient solutions where B was omitted or not for 15 days. Boron was applied to young or mature cotton leaves in some of the minus B treatments. Root growth decreased when the plants were transferred to B solutions, but there was a full recovery when B was replaced in the nutrient medium. Boron deficiency, even when temporary, reduced cotton shoot dry matter yields, plant height and flower and fruit set, and these could not be prevented by foliar application of B. Because of decreased dry matter production, leaves of deficient cotton plants actually showed higher B concentrations than non deficient leaves. This would be misleading when a mature leaf is sampled for diagnosis. If there is any B mobility in cotton phloem, it is very low.
Resumo:
In order to study the influence of the amorphous Boron powder on the superconducting properties, MgB2 bulk samples were prepared using 96% and 99% pure commercial Boron powder as well as 92% commercial Boron powder after purification process. The results showed that the original 96% and the purified 92% powders have larger particle size compared to the pure 99% Boron powder, which leads to reduce magnetic critical current densities. In order to get higher performance MgB2, the purified low grade Boron powder need further control of their microstructure such as smaller particle size to enhance flux pinning from the grain boundaries which represent effective pinning centers. © 2007 Elsevier B.V. All rights reserved.
Resumo:
The cultivation of fruit plants from temperate climate in tropical or subtropical regions can be a good income alternative for the producer. However, due to the little existent information about cultivation of those fruit plants, the producers use imported techniques of other producing areas, or even an association of practices used for other fruit plants, pointing out the leaf spray fertilization of micronutrients without appropriate scientific base. In this context, the objective of this study was to verify the effect of the leaf spray fertilization of B and Zn on productivity and fruit quality of Japanese pear tree. The experiment was conducted from 2004 to 2005, in Ilha Solteira, in northwestern São Paulo State-Brazil. The climate is, according to the Köpppen Classification, tropical wet and dry (Aw). The 'Okusankichi' cultivar, grafted on Pyrus communis L. rootstock was used as well as doses of 110 g.ha-1 of B and 250 g.ha-1 of Zn in each application. The treatments were: T1. water, T2. boric acid, T3. zinc sulfate, T4. T2 + T3, T5. boric acid + urea + citric acid + EDTA, T6. zinc sulfate + urea + citric acid + EDTA, T7. T5 + T6, T8. boric acid + urea + citric acid + EDTA + sodium molibdate + sulfur + calcium chloride, T9. zinc sulfate + urea + citric acid + EDTA + Fe sulfate + Mn sulfate + Mg sulfate and, T10. T8+T9. A randomized blocks design was used and the averages were compared by Tukey test. In the first crop the mixture of boric acid with quelating agents were efficient to supply B to the plants and zinc sulfate plus quelating agents were efficient to increase Zn leaf content. However, the productivity and the fruit quality were not influenced by the leaf spray of B and Zn. In the second crop the leaf content of B and Zn and the productivity were not influenced by the leaf spray; the boric acid and the zinc sulfate with or without quelating agents increased the contents of total soluble solids and, the boric acid with or without quelating agents increased the contents of total titratable acidity.
Resumo:
Carbon nanoscrolls (graphene layers rolled up into papyrus-like tubular structures) are nanostructures with unique and interesting characteristics that could be exploited to build several new nanodevices. However, an efficient and controlled synthesis of these structures was not achieved yet, making its large scale production a challenge to materials scientists. Also, the formation process and detailed mechanisms that occur during its synthesis are not completely known. In this work, using fully atomistic molecular dynamics simulations, we discuss a possible route to nanoscrolls made from graphene layers deposited over silicon oxide substrates containing chambers/pits. The scrolling mechanism is triggered by carbon nanotubes deposited on the layers. The process is completely general and can be used to produce scrolls from other lamellar materials, like boron nitride, for instance. © 2013 American Institute of Physics.
Resumo:
The isotopic technique was employed to study boron (B) mobility in tomato and beetroot plants under protected cultivation conditions. An experiment was conducted in which both species grew in 10-dm3 vases filled with coconut fiber, under hydroponic conditions. The plants were subjected to four different treatments: (1) no B in the substratum and no foliar fertilization; (2) no B in the substratum, with foliar 10B fertilization; (3) B in the substratum, with foliar 10B fertilization; and (4) 10B in the substratum and no foliar fertilization. The biological growth variables and total B and 10B contents in the plant parts grown after the application of the nutrient were evaluated. For increasing B content in young tissues, the foliar application of this element was not as efficient as application via root system, indicating low mobility of B in the tissues of both beetroot and tomato plants. © 2013 Copyright Taylor & Francis Group, LLC.
Resumo:
The wavelength-integrated absorbance (WIA) and summation of absorbance (∑ lines) of different lines were evaluated to enhance sensitivity and determine B, P and S in medicinal plants by HR-CS FAAS. The lowest LOD for B (0.5mgL-1) and P (13.7mgL-1) was obtained by integration of lines 249.773nm (3pixels) and 247.620nm (5pixels), respectively. The ∑ lines for CS at 257.595nm and 257.958nm furnished LOD=30.5mgL-1, ca. 10% lower than the LOD obtained for the WIA using 257.595nm and 5pixels. Data showed the advantage of WIA over ∑ lines to improve sensitivity for all analytes. Under optimized conditions, calibration curves in the 1.0-100mgL-1 B and 50.0-2000mgL-1 P, S ranges were consistently obtained. Results obtained with the HR-CS FAAS method were in agreement at 98% and 95% confidence level with certified values for B and P, respectively. And results for S were in accordance to non-certified values. Concentrations of B, P, and S in 12 medicinal plants analyzed by the proposed method varied within the 19.4-34.5mgkg-1 B, 719-3910mgkg-1 P and 1469-7653mgkg-1 S ranges. © 2012 Elsevier B.V.
Resumo:
The pristine boron nitride nanotubes have a large direct band gap around 5 eV. This band gap can be engineered by doping. We investigate electronic structure of the doped hexagonal boron nitride (5,5) nanotubes using the linearized augmented cylindrical wave method. In particular, this work focuses on systematical study of the band gap and the density of states around the Fermi-level when the nanotubes are doped by intrinsic impurities of two substitutional boron atoms in a super cell and a comparative analysis of the relative stability of three structures studied here. This corresponds to 3.3% of impurity concentration. We calculate 29 configurations of the nanotubes with different positions of the intrinsic impurities in the nanotube. The band gap and density of states around the Fermi level show strong dependence on the relative positions of the impurity atoms. The two defect sub bands called D∏(B) appear in the band gap of the pristine nanotube. The doped nanotubes possess p-type semiconductor properties with the band gap of 1.3-1.9 eV.
Resumo:
Temporary B deficiency can be triggered by liming of acid soils because of increased B adsorption at higher soil pH. Plants respond directly to the activity of B in soil solution and only indirectly to B adsorbed on soil constituents. Because the range between deficient and toxic B concentration is relatively narrow, this poses difficulty in maintaining appropriate B levels in soil solution. Thus, knowledge of the chemical behavior of B in the soil is particularly important. The present study investigated the effect of soil pH on B adsorption in four soils of Parana State, and to correlate these values with the physical and chemical properties of the soils. Surface samples were taken from a Rhodic Hapludox, Arenic Hapludalf, Arenic Hapludult, and one Typic Usthorthent. To evaluate the effect of pH on B adsorption, subsamples soil received the application of increasing rates of calcium carbonate. Boron adsorption was accomplished by shaking 2.0 g soil, for 24 h, with 20 mL of 0.01 mol L-1 NaCl solution containing different concentrations (0.0, 0.1, 0.2, 0.4, 0.8, 1.2, 1.6, 2.0, and 4.0 mg B L-1). Sorption was fitted to non-linear form of the Langmuir adsorption isotherm. Boron adsorption increased as concentration increased. Boron adsorption was dependent on soil pH, increasing as a function of pH in the range between 4.6 and 7.4, although the bonding energy has decreased. Maximum adsorption capacity (MAC) of B was observed in the Arenic Hapludalf (49.8 mg B kg(-1) soil) followed by Arenic Hapludult (22.5 mg kg(-1)), Rhodic Hapludox (17.4 mg kg(-1)), and Typic Usthorthent (7.0 mg kg(-1)). The organic matter content, clay content, and aluminum oxide content (Al2O3) were the soils properties that affecting the B adsorption on Parana soils.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Boron, one of the micronutrients frequently found in low levels in tropical soils affects nutrition and productivity of coconut palm trees essentially cultivated in tropical climates. The objective of this research study was to evaluate the effect of boron on the nutritional status of the plant and its productivity when artificially applied to the culture soil. The experiment was carried out in a four year old, artificially irrigated, dwarf coconut palm orchard in Brazil, between January, 2005 and October, 2006. The soil was a red yellow Latosol (B: 0.18 mg dm(-3)). The treatments consisted in the application of five boron dosages: zero, 1, 2, 4, and 6 kg ha(-1). In the field, the treatments were arranged according to a completely randomized block design, with four replications. Boron (borax) dosages were applied in equal halves directly into the soil in the months of January and February of 2005. Boron concentration in the soil and plant and plant productivity were evaluated. The higher palm tree production was associated to levels of 0.6mg dm(-3) of B in the soil and 23.5mg kg(-1) in leaves. Ninety five percent of palm trees maximum production was obtained with the use of a boron dosage of 2,1kg ha(-1).
Resumo:
An adequate supply of boron (B) is required for the optimal growth and development of cotton (Gossypium hirsutum L.) plants, but the low phloem mobility of B limits the possibilities of correcting B deficiency. There are indications that different cotton cultivars could have different responses to B deficiency. The differences in responses of cotton cultivars to B regarding photoassimilate production and transport were studied in a greenhouse experiment with nutrient solution. Treatments consisted of three cotton cultivars (FMT 701, DP 604BG and FMX 993) and five concentrations of B (0.0, 2.5, 5.0, 10.0 and 20.0 mu mol L-1). Sampling began at the phenological stage B1 (first square) and continued for four weeks. The leaf area and the number of reproductive branches and structures decreased due to B deficiency. A higher level of abortion of reproductive structures was observed under B deficiency. Boron deficiency increased the internal CO2 concentration but decreased the transpiration rate, stomatal conductance and photosynthesis. Despite the decrease in photosynthesis, nonstructural carbohydrates accumulated in the leaves due to decreased export to bolls in B-deficient plants. The response to B deficiency is similar among cotton cultivars, which shows that the variability for this trait is low even for cultivars with different genetic backgrounds.