968 resultados para Biomass, ash free dry mass


Relevância:

100.00% 100.00%

Publicador:

Resumo:

has to added by the author.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Responses by marine species to ocean acidification (OA) have recently been shown to be modulated by external factors including temperature, food supply and salinity. However the role of a fundamental biological parameter relevant to all organisms, that of body size, in governing responses to multiple stressors has been almost entirely overlooked. Recent consensus suggests allometric scaling of metabolism with body size differs between species, the commonly cited 'universal' mass scaling exponent (b) of ¾ representing an average of exponents that naturally vary. One model, the Metabolic-Level Boundaries hypothesis, provides a testable prediction: that b will decrease within species under increasing temperature. However, no previous studies have examined how metabolic scaling may be directly affected by OA. We acclimated a wide body-mass range of three common NE Atlantic echinoderms (the sea star Asterias rubens, the brittlestars Ophiothrix fragilis and Amphiura filiformis) to two levels of pCO2 and three temperatures, and metabolic rates were determined using closed-chamber respirometry. The results show that contrary to some models these echinoderm species possess a notable degree of stability in metabolic scaling under different abiotic conditions; the mass scaling exponent (b) varied in value between species, but not within species under different conditions. Additionally, we found no effect of OA on metabolic rates in any species. These data suggest responses to abiotic stressors are not modulated by body size in these species, as reflected in the stability of the metabolic scaling relationship. Such equivalence in response across ontogenetic size ranges has important implications for the stability of ecological food webs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study examined the effects of long-term culture under altered conditions on the Antarctic sea urchin, Sterechinus neumayeri. Sterechinus neumayeri was cultured under the combined environmental stressors of lowered pH (-0.3 and -0.5 pH units) and increased temperature (+2 °C) for 2 years. This time-scale covered two full reproductive cycles in this species and analyses included studies on both adult metabolism and larval development. Adults took at least 6-8 months to acclimate to the altered conditions, but beyond this, there was no detectable effect of temperature or pH. Animals were spawned after 6 and 17 months exposure to altered conditions, with markedly different outcomes. At 6 months, the percentage hatching and larval survival rates were greatest in the animals kept at 0 °C under current pH conditions, whilst those under lowered pH and +2 °C performed significantly less well. After 17 months, performance was not significantly different across treatments, including controls. However, under the altered conditions urchins produced larger eggs compared with control animals. These data show that under long-term culture adult S. neumayeri appear to acclimate their metabolic and reproductive physiology to the combined stressors of altered pH and increased temperature, with relatively little measureable effect. They also emphasize the importance of long-term studies in evaluating effects of altered pH, particularly in slow developing marine species with long gonad maturation times, as the effects of altered conditions cannot be accurately evaluated unless gonads have fully matured under the new conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigated the impacts of warming and elevated pCO2 on newly settled Amphibalanus improvisus from Kiel Fjord, an estuarine ecosystem characterized by significant natural pCO2 variability. In two experiments, juvenile barnacles were maintained at two temperature and three pCO2 levels (20/24°C, 700-2.140 µatm) for 8 weeks in a batch culture and at four pCO2 levels (20°C, 620-2.870 µatm) for 12 weeks in a water flow-through system. Warming as well as elevated pCO2 hardly affected growth or the condition index of barnacles, although some factor combinations led to temporal significances in enhanced or reduced growth with an increase in pCO2. While warming increased the shell strength of A. improvisus individuals, elevated pCO2 had only weak effects. We demonstrate a strong tolerance of juvenile A. improvisus to mean acidification levels of about 1,000 µatm pCO2 as is already naturally experienced by the investigated barnacle population.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Variability in metabolic scaling in animals, the relationship between metabolic rate ( R) and body mass ( M), has been a source of debate and controversy for decades. R is proportional to Mb, the precise value of b much debated, but historically considered equal in all organisms. Recent metabolic theory, however, predicts b to vary among species with ecology and metabolic level, and may also vary within species under different abiotic conditions. Under climate change, most species will experience increased temperatures, and marine organisms will experience the additional stressor of decreased seawater pH ('ocean acidification'). Responses to these environmental changes are modulated by myriad species-specific factors. Body-size is a fundamental biological parameter, but its modulating role is relatively unexplored. Here, we show that changes to metabolic scaling reveal asymmetric responses to stressors across body-size ranges; b is systematically decreased under increasing temperature in three grazing molluscs, indicating smaller individuals were more responsive to warming. Larger individuals were, however, more responsive to reduced seawater pH in low temperatures. These alterations to the allometry of metabolism highlight abiotic control of metabolic scaling, and indicate that responses to climate warming and ocean acidification may be modulated by body-size.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Body-size and temperature are the major factors explaining metabolic rate, and the additional factor of pH is a major driver at the biochemical level. These three factors have frequently been found to interact, complicating the formulation of broad models predicting metabolic rates and hence ecological functioning. In this first study of the effects of warming and ocean acidification, and their potential interaction, on metabolic rate across a broad body-size range (two-to-three orders of magnitude difference in body mass) we addressed the impact of climate change on the sea urchin Heliocidaris erythrogramma in context with climate projections for east Australia, an ocean warming hotspot. Urchins were gradually introduced to two temperatures (18 and 23 °C) and two pH (7.5 and 8.0), and maintained for two months. That a new physiological steady-state had been reached, otherwise know as acclimation, was validated through identical experimental trials separated by several weeks. The relationship between body-size, temperature and acidification on the metabolic rate of H. erythrogramma was strikingly stable. Both stressors caused increases in metabolic rate; 20% for temperature and 19% for pH. Combined effects were additive; a 44% increase in metabolism. Body-size had a highly stable relationship with metabolic rate regardless of temperature or pH. None of these diverse drivers of metabolism interacted or modulated the effects of the others, highlighting the partitioned nature of how each influences metabolic rate, and the importance of achieving a full acclimation state. Despite these increases in energetic demand there was very limited capacity for compensatory modulating of feeding rate; food consumption increased only in the very smallest specimens, and only in response to temperature, and not pH. Our data show that warming, acidification and body-size all substantially affect metabolism and are highly consistent and partitioned in their effects, and for H. erythrogramma near-future climate change will incur a substantial energetic cost.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using multiple-choice feeding experiments, the selection of six species of macrophytes by the herbivorous rabbitfish Siganus fuscescens was examined. The rabbitfish showed distinct food choice in the laboratory; however, selection of macrophytes by S. fuscescens was not related to their absolute nutrient content (nitrogen, carbon, energy and ash free dry mass). Nutrient assimilation estimates showed that the macrophytes which were most preferred were those that S. fuscescens assimilated best. In S. fuscescens, the macrophytes that were preferred passed through the gut significantly faster than the less preferred species. Gut transit time had a significant effect on the absolute value of a food item in terms of net nutrient gain per unit time. This study showed that food value could be inferred from the absolute nutrient content of the macrophytes. Thus both the ability to assimilate nutrients as well as the absolute nutrient content of macrophytes must be quantified when assessing food value. (C) 2004 The Fisheries society of the British Isles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rates of food intake in animals consuming abundant prey can be constrained by the rates of digestion or excretion of ingested substances, such as salt, particularly so in the animals that regularly migrate between freshwater and saltwater environments. We tested this hypothesis in a long-distance migrant shorebird, the eastern curlew Numenius madagascariensis (suborder Charadrii), foraging on intertidal decapods in eastern Australia. We predicted that if food intake rates are constrained osmotically, individuals with access to freshwater and less saline prey (FW group) would have higher rates of food and water intake than individuals with seawater-only access (SW group). Food intake rates did not differ between the FW and SW groups (0.14 g ash-free dry mass min(-1)), nor did the water influx rates (0.75 g min(-1)). Salt intake rates were lower at FW sites (19.3 versus 23.3 mg NaCl min(-1)) and overall they were similar to those of marine birds. Food intake rate in the eastern curlew appeared limited by digestive rather than by osmoregulatory capacity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As field determinations take much effort, it would be useful to be able to predict easily the coefficients describing the functional response of free-living predators, the function relating food intake rate to the abundance of food organisms in the environment. As a means easily to parameterise an individual-based model of shorebird Charadriiformes populations, we attempted this for shorebirds eating macro-invertebrates. Intake rate is measured as the ash-free dry mass (AFDM) per second of active foraging; i.e. excluding time spent on digestive pauses and other activities, such as preening. The present and previous studies show that the general shape of the functional response in shorebirds eating approximately the same size of prey across the full range of prey density is a decelerating rise to a plateau, thus approximating the Holling type 11 ('disc equation') formulation. But field studies confirmed that the asymptote was not set by handling time, as assumed by the disc equation, because only about half the foraging time was spent in successfully or unsuccessfully attacking and handling prey, the rest being devoted to searching. A review of 30 functional responses showed that intake rate in free-living shorebirds varied independently of prey density over a wide range, with the asymptote being reached at very low prey densities (< 150/m(-2)). Accordingly, most of the many studies of shorebird intake rate have probably been conducted at or near the asymptote of the functional response, suggesting that equations that predict intake rate should also predict the asymptote. A multivariate analysis of 468 'spot' estimates of intake rates from 26 shorebirds identified ten variables, representing prey and shorebird characteristics, that accounted for 81 % of the variance in logarithm-transformed intake rate. But four-variables accounted for almost as much (77.3 %), these being bird size, prey size, whether the bird was an oystercatcher Haematopus ostralegus eating mussels Mytilus edulis, or breeding. The four variable equation under-predicted, on average, the observed 30 estimates of the asymptote by 11.6%, but this discrepancy was reduced to 0.2% when two suspect estimates from one early study in the 1960s were removed. The equation therefore predicted the observed asymptote very successfully in 93 % of cases. We conclude that the asymptote can be reliably predicted from just four easily measured variables. Indeed, if the birds are not breeding and are not oystercatchers eating mussels, reliable predictions can be obtained using just two variables, bird and prey sizes. A multivariate analysis of 23 estimates of the half-asymptote constant suggested they were smaller when prey were small but greater when the birds were large, especially in oystercatchers. The resulting equation could be used to predict the half-asymptote constant, but its predictive power has yet to be tested. As well as predicting the asymptote of the functional response, the equations will enable research workers engaged in many areas of shorebird ecology and behaviour to estimate intake rate without the need for conventional time-consuming field studies, including species for which it has not yet proved possible to measure intake rate in the field.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A colonização por invertebrados aquáticos no detrito de Salvinia herzogii foi estudada em dois lagos rasos subtropicais de diferentes estados tróficos (eutrófico e oligotrófico) localizados no campus Carreiros da Universidade Federal do Rio Grande, extremo sul do Brasil. Aproximadamente 6g (peso úmido) de S. herzogii foram incubados em experimentos com litter bags (30 X 20 cm com 10 mm de malha) e a decomposição do detrito acompanhada durante 110 dias (entre setembro de 2008 e janeiro de 2009), período no qual o detrito decompôs-se cerca de 95%. Quatro réplicas foram retiradas após os intervalos de 1, 30, 60, 90 e 110 dias de incubação e o detrito foi limpo em água corrente sob peneira de 250µm de malha para que fossem retidos os organismos e depois fixados em álcool 80%. As plantas depois de limpas foram secas à 60ºC por 72 horas para obtenção do peso seco, depois trituradas, para as análises de nitrogênio e fósforo total e para obtenção do peso seco livre de cinzas, equivalente a porcentagem de massa remanescente (%R). Os invertebrados foram identificados até o menor nível taxonômico possível e depositados na coleção de Invertebrados Límnicos – ICB - FURG. Para cada amostra foram calculadas a riqueza e a densidade de táxons, os índices de diversidade de Shannon - Wiener (H’), homogeneidade de Pielou (J). Para determinar qual grupo de invertebrados foi mais importante para a estruturação da comunidade em cada lago, foi realizada a análise de espécies indicadoras (indicator especies analysis). Um total de 32.399 organismos distribuídos em 38 táxons foram registrados para os lagos estudados. Dezoito táxons foram comuns entre os lagos em cada experimento. Um total de 1.449.612 ind. 100g PS no ambiente eutrófico e 372.380 ind. 100g PS para o ambiente oligotrófico foi registrado (p=0,4771). O táxon mais abundante encontrado para o lago eutrófico foi Goeldichironomus (Chironomidae; 81% de todos os organismos coletados), enquanto queno lago oligotrófico, o táxon mais abundante foi Caenis (Caenidae; 29,1% de todos os organismos coletados). A colonização do detrito foi rápida, nas primeiras 24 horas foram registrados 10 táxons nos lagos eutrófico e oligotrófico, sendo os predadores o grupo dominante (52 e 70%, respectivamente) neste período. Durante o período do experimento,no lago eutrófico, os coletores-catadores foram os mais abundantes (91,2 % do número total de organismos), seguido de coletores-filtradores (4,7 %) e predadores (3,5 %). No lago oligotrófico, os coletores-catadores foram os mais abundantes (34,1 % do número total de organismos), seguido de predadores (26,8 %), raspadores (24,9 %) e fragmentadores (10,5 %). O Índice de diversidade acompanhou os aumentos de densidade durante os experimentos, sendo que o valor máximo observado foi no lago oligotrófico(H’=2,31) no 60º dia de incubação, enquanto que o menor valor foi registrado para o lago eutrófico (H’=0,19) no 110º dia de incubação. A taxa de decomposição de S. herzogii foi diferente no lago eutrófico (k = 0,019; R2 = 0,88) e oligotrófico (k = 0,021; R2 = 0,81),porém essa diferença não foi significativa (ANCOVA; F = 6,38 e p = 0,6755).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The seasonal variation of the periphytic community attached to an artificial substratum (glass tubes) was studied during two different periods in a lagoon connected to the Paranapanema River, the main tributary of the Jurumirim Reservoir (São Paulo-Brazil). An analysis of dry weight, ash free dry weight, chlorophyll a, phaeophytin and primary productivity of periphyton was carried out. The first experiment lasted from August to December 1993, the second from February to June 1994. Tubes were removed after 7, 14, 21, 28, 60, 90 and 119 days of incubation. In the 1st experiment, the periphytic community reached a higher biomass after the 4th week of colonization (28th day), in the 2nd experiment after the 2nd week (14th day). This discrepancy is related to seasonal differences in environmental factors (water temperature, nutrients concentrations and water discharge) that determine initial colonization. After the first stages of colonization, the biomass and primary productivity of periphyton reached their maximum values after the 60th day of incubation. In both experiments, three developmental phases could be discerned. In the initial phase, an exponential growth was observed. In the second phase, the bioderm reached its maximum biomass and productivity. In the third phase, a decrease of biomass and productivity occurred.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The West Antarctic Peninsula is one of the fastest warming regions on the planet. Faster glacier retreat and related calving events lead to more frequent iceberg scouring, fresh water input and higher sediment loads which may affect benthic marine communities. On the other hand, the appearance of newly formed ice-free areas provides new substrates for colonization. Here we investigated the effect of these conditions on four benthic size classes (microbenthos, meiofauna and macrofauna) using Potter Cove (King George Island, West Antarctic Peninsula) as a case study. We identified three sites within the cove experiencing different levels of glacier retreat-related disturbance. Our results showed the existence of different communities at the same depth over a relatively small distance (about 1 km**2). This suggests glacial activity structures biotic communities over a relatively small spatial scale. In areas with frequent ice scouring and higher sediment accumulation rates, a patchy community, mainly dominated by macrobenthic scavengers (such as Barrukia cristata), vagile organisms, and younger individuals of sessile species (such as Yoldia eigthsi) was found. Meiofauna organisms such as cumaceans are found to be resistant to re-suspension and high sedimentation loads. The nematode genus Microlaimus was found to be successful in the newly exposed ice-free site, confirming its ability as a pioneering colonizer. In general, the different biological size classes appear to respond in different ways to the ongoing disturbances, suggesting that adaptation processes may be size related. Our results suggest that with continued deglaciation, more diverse but less patchy macrobenthic assemblages can become established due to less frequent ice scouring events.