969 resultados para Berlin (Germany). Nationalgalerie.
Resumo:
We analyze low-temperature Raman and photoluminescence spectra of MBE-grown GaN layers on sapphire. Strong and sharp Raman peaks are observed in the low frequency region. These peaks, which are enhanced by excitation in resonance with yellow luminescence transitions, are attributed to electronic transitions related to shallow donor levels in hexagonal GaN. It is proposed that a low frequency Raman peak at 11.7 meV is caused by a pseudo-local vibration mode related to defects involved in yellow luminescence transitions. The dependence of the photoluminescence spectra on temperature gives additional information about the residual impurities in these GaN layers.
Resumo:
Natl Univ Defen Technol, China & Nanyang Technol Univ, NUDT
Resumo:
Chinese Acad Sci, ISCAS Lab Internet Software Technologies
Resumo:
Chinese Acad Sci, ISCAS Lab Internet Software Technologies
Resumo:
Chinese Acad Sci, ISCAS Lab Internet Software Technologies
Resumo:
Chinese Assoc Cryptol Res, State Key Lab Informat Secur, Inst Software, Grad Univ Chinese Acad Sci, Natl Nat Sci Fdn China
Resumo:
Beijing University of Technology (BJUT); Beijing Municipal Lab of Brain Informatics; Chinese Society of Radiology; National Natural Science Foundation of China (NSFC); State Administration of Foreign Experts Affairs
Resumo:
Chinese Acad Sci, ISCAS Lab Internet Software Technologies
Resumo:
Chinese Assoc Cryptol Res, State Key Lab Informat Secur, Inst Software, Grad Univ Chinese Acad Sci, Natl Nat Sci Fdn China
Resumo:
The grey system theory studies the uncertainty of small sample size problems. This paper using grey system theory in the deformation monitoring field, based on analysis of present grey forecast models, developed the spatial multi-point model. By using residual modification, the spatial multi-point residual model eras developed in further study. Then, combined with the sedimentation data of Xiaolangdi Multipurpose Dam, the results are compared and analyzed, the conclusion has been made and the advantages of the residual spatial multi-point model has been proved.
A simulation-based design method to transfer surface mount RF system to flip-chip die implementation
Resumo:
The flip-chip technology is a high chip density solution to meet the demand for very large scale integration design. For wireless sensor node or some similar RF applications, due to the growing requirements for the wearable and implantable implementations, flip-chip appears to be a leading technology to realize the integration and miniaturization. In this paper, flip-chip is considered as part of the whole system to affect the RF performance. A simulation based design is presented to transfer the surface mount PCB board to the flip-chip die package for the RF applications. Models are built by Q3D Extractor to extract the equivalent circuit based on the parasitic parameters of the interconnections, for both bare die and wire-bonding technologies. All the parameters and the PCB layout and stack-up are then modeled in the essential parts' design of the flip-chip RF circuit. By implementing simulation and optimization, a flip-chip package is re-designed by the parameters given by simulation sweep. Experimental results fit the simulation well for the comparison between pre-optimization and post-optimization of the bare die package's return loss performance. This design method could generally be used to transfer any surface mount PCB to flip-chip package for the RF systems or to predict the RF specifications of a RF system using the flip-chip technology.