935 resultados para Air flow


Relevância:

60.00% 60.00%

Publicador:

Resumo:

A reduzida informação e o pouco trabalho científico desenvolvido na área de sistemas de combustão de biomassa de média potência, faz dos objectivos propostos neste trabalho elementos importantes. O trabalho científico a seguir apresentado, vai permitir obter as bases para o desenvolvimento de condições apropriadas de operação de sistemas de combustão a biomassa, aumentando a eficiência e a rentabilidade económica deste tipo de sistema energético. O principal objetivo do presente trabalho consistiu na aplicação de metodologias de monitorização que permitam caracterizar e melhorar a eficiência do sistema de combustão, na implementação dos métodos escolhidos e na monitorização das condições de operação de uma caldeira industrial de combustão de biomassa, destacando-se: (i) monitorização dos caudais de alimentação de biomassa à caldeira realizada por sistemas de alimentação sem-fim; (ii) análise e monitorização de temperaturas e pressão; (iii) monitorização do caudal de ar de combustão; (iv) monitorização do caudal de gases de exaustão; (v) monitorização da potência térmica; (vi) monitorização da composição do efluente gasoso. A caracterização físicas de amostras de biomassa, o teste a diferentes tipos de biomassa com diferentes condições de operação e a recolha de amostras de cinzas de combustão para a caracterização físico-química são outros métodos de monitorização e caracterização aplicados. Também foi desenvolvido e aplicado um ensaio de controlo do sistema de alimentação em modo de operação manual e comparado com o sistema de controlo do sistema de alimentação em modo de operação automático. O estudo realizado permite concluir que deve ser desenvolvido e implementado um algoritmo de controlo e operação da fornalha que permita um doseamento mais adequado dos caudais de combustível e ar de combustão com vista a melhorar o desempenho do sistema combustão.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The mesoporous molecular sieves of the MCM-41 and FeMCM-41 type are considered promissory as support for metals used as catalysts in oil-based materials refine processes and as adsorbents for environmental protection proposes. In this work MCM-41 and FeMCM41 were synthesized using rice husk ash - RHA as alternative to the conventional silica source. Hydrothermal synthesis was the method chosen to prepare the materials. Pre-defined synthesis parameters were 100°C for 168 hours, later the precursor was calcinated at 550°C for 2 hours under nitrogen and air flow. The sieves containing different proportions of iron were produced by two routes: introduction of iron salt direct synthesis; and a modification post synthesis consisting in iron salt 1 % and 5% impregnation in the material followed by thermal decomposition. The molecular sieves were characterized by X ray diffraction XRD, Fourier transform infrared spectroscopy FT-IR, X ray fluorescence spectroscopy XFR, scanning electronic microscopy SEM, specific surface area using the BET method, Termogravimetry TG. The kinetic model of Flynn Wall was used with the aim of determining the apparent activation energy of the surfactant remove (CTMABr) in the MCM- 41 porous. The analysis made possible the morphology characterization, identifying the presence of hexagonal structure typical for mesoporous materials, as well as observation of the MCM41 and iron of characteristic bands.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This Masters Degree dissertation seeks to make a comparative study of internal air temperature data, simulated through the thermal computer application DesignBuilder 1.2, and data registered in loco through HOBO® Temp Data Logger, in a Social Housing Prototype (HIS), located at the Central Campus of the Federal University of Rio Grande do Norte UFRN. The prototype was designed and built seeking strategies of thermal comfort recommended for the local climate where the study was carried out, and built with panels of cellular concrete by Construtora DoisA, a collaborator of research project REPESC Rede de Pesquisa em Eficiência Energética de Sistemas Construtivos (Research Network on Energy Efficiency of Construction Systems), an integral part of Habitare program. The methodology employed carefully examined the problem, reviewed the bibliography, analyzing the major aspects related to computer simulations for thermal performance of buildings, such as climate characterization of the region under study and users thermal comfort demands. The DesignBuilder 1.2 computer application was used as a simulation tool, and theoretical alterations were carried out in the prototype, then they were compared with the parameters of thermal comfort adopted, based on the area s current technical literature. Analyses of the comparative studies were performed through graphical outputs for a better understanding of air temperature amplitudes and thermal comfort conditions. The data used for the characterization of external air temperature were obtained from the Test Reference Year (TRY), defined for the study area (Natal-RN). Thus the author also performed comparative studies for TRY data registered in the years 2006, 2007 and 2008, at weather station Davis Precision Station, located at the Instituto Nacional de Pesquisas Espaciais INPE-CRN (National Institute of Space Research), in a neighboring area of UFRN s Central Campus. The conclusions observed from the comparative studies performed among computer simulations, and the local records obtained from the studied prototype, point out that the simulations performed in naturally ventilated buildings is quite a complex task, due to the applications limitations, mainly owed to the complexity of air flow phenomena, the influence of comfort conditions in the surrounding areas and climate records. Lastly, regarding the use of the application DesignBuilder 1.2 in the present study, one may conclude that it is a good tool for computer simulations. However, it needs some adjustments to improve reliability in its use. There is a need for continued research, considering the dedication of users to the prototype, as well as the thermal charges of the equipment, in order to check sensitivity

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The building envelope is the principal mean of interaction between indoors and environment, with direct influence on thermal and energy performance of the building. By intervening in the envelope, with the proposal of specific architectural elements, it is possible to promote the use of passive strategies of conditioning, such as natural ventilation. The cross ventilation is recommended by the NBR 15220-3 as the bioclimatic main strategy for the hot and humid climate of Natal/RN, offering among other benefits, the thermal comfort of occupants. The analysis tools of natural ventilation, on the other hand, cover a variety of techniques, from the simplified calculation methods to computer fluid dynamics, whose limitations are discussed in several papers, but without detailing the problems encountered. In this sense, the present study aims to evaluate the potential of wind catchers, envelope elements used to increase natural ventilation in the building, through CFD simplified simulation. Moreover, it seeks to quantify the limitations encountered during the analysis. For this, the procedure adopted to evaluate the elements implementation and efficiency was the CFD simulation, abbreviation for Computer Fluid Dynamics, with the software DesignBuilder CFD. It was defined a base case, where wind catchers were added with various settings, to compare them with each other and appreciate the differences in flows and air speeds encountered. Initially there has been done sensitivity tests for familiarization with the software and observe simulation patterns, mapping the settings used and simulation time for each case simulated. The results show the limitations encountered during the simulation process, as well as an overview of the efficiency and potential of wind catchers, with the increase of ventilation with the use of catchers, differences in air flow patterns and significant increase in air speeds indoors, besides changes found due to different element geometries. It is considered that the software used can help designers during preliminary analysis in the early stages of design

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A asma é uma doença crónica das vias respiratórias, normalmente associada a uma hiper- reatividade das vias aéreas e a uma obstrução variável do fluxo de ar. É um problema grave de saúde global e que se encontra associado a vários fatores como o envelhecimento, a pobreza, desemprego e condições de vida insalubres. A adesão ao tratamento é importante para que exista o bom controlo da asma, contribuindo dessa forma para a melhoria na qualidade de vida com redução dos custos associados à doença. A intervenção de uma equipa multidisciplinar, sistematizando conhecimentos em diversas áreas para a prevenção e educação na saúde, promovendo o reforço do poder e da responsabilidade do doente, contribuindo para a melhoria individual e coletiva dentro de um contexto de vida saudável, tem como objetivo incentivar alterações de comportamentos para a melhoria de estilos de vida mais saudáveis. A implementação da consulta de enfermagem surgiu da necessidade em acompanhar doentes com o diagnóstico de asma uma vez que só existe consulta médica. A consulta de enfermagem tem por finalidade reforçar a educação do doente e proporcionar maior segurança e aceitação na adesão e controlo da doença

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Natural air ventilation is the most import passive strategy to provide thermal comfort in hot and humid climates and a significant low energy strategy. However, the natural ventilated building requires more attention with the architectural design than a conventional building with air conditioning systems, and the results are less reliable. Therefore, this thesis focuses on softwares and methods to predict the natural ventilation performance from the point of view of the architect, with limited resource and knowledge of fluid mechanics. A typical prefabricated building was modelled due to its simplified geometry, low cost and occurrence at the local campus. Firstly, the study emphasized the use of computational fluid dynamics (CFD) software, to simulate the air flow outside and inside the building. A series of approaches were developed to make the simulations possible, compromising the results fidelity. Secondly, the results of CFD simulations were used as the input of an energy tool, to simulate the thermal performance under different rates of air renew. Thirdly, the results of temperature were assessed in terms of thermal comfort. Complementary simulations were carried out to detail the analyses. The results show the potentialities of these tools. However the discussions concerning the simplifications of the approaches, the limitations of the tools and the level of knowledge of the average architect are the major contribution of this study

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The occurrence of heavy oil reservoirs have increased substantially and, due to the high viscosity characteristic of this type of oil, conventional recovery methods can not be applied. Thermal methods have been studied for the recovery of this type of oil, with a main objective to reduce its viscosity, by increasing the reservoir temperature, favoring the mobility of the oil and allowing an increasing in the productivity rate of the fields. In situ combustion (ISC) is a thermal recovery method in which heat is produced inside the reservoir by the combustion of part of the oil with injected oxygen, contrasting with the injection of fluid that is heated in the surface for subsequent injection, which leads to loss heat during the trajectory to the reservoir. The ISC is a favorable method for recovery of heavy oil, but it is still difficult to be field implemented. This work had as an objective the parametric analysis of ISC process applied to a semi-synthetic reservoir with characteristics of the Brazilian Northeast reservoirs using vertical production and vertical injection wells, as the air flow injection and the wells completions. For the analysis, was used a commercial program for simulation of oil reservoirs using thermal processes, called Steam, Thermal and Advanced Processes Reservoir Simulator (STARS) from Computer Modelling Group (CMG). From the results it was possible to analyze the efficiency of the ISC process in heavy oil reservoirs by increasing the reservoir temperature, providing a large decrease in oil viscosity, increasing its mobility inside the reservoir, as well as the improvement in the quality of this oil and therefore increasing significantly its recovered fraction. Among the analyzed parameters, the flow rate of air injection was the one which had greater influence in ISC, obtaining higher recovery factor the higher is the flow rate of injection, due to the greater amount of oxygen while ensuring the maintenance of the combustion front

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The goal of the thesis "Conversion of a Micro, Glow-Ignition, Two-Stroke Engine from Nitromethane-Methanol Blend Fuel to Military Jet Propellant (JP-8)" was to demonstrate the ability to operate a small engine on JP-8 and was completed in two phases. The first phase included choosing, developing a test stand for, and baseline testing a nitromethane-methanol-fueled engine. The chosen engine was an 11.5 cc, glow-ignition, two-stroke engine designed for remote-controlled helicopters. A micro engine test stand was developed to load and motor the engine. Instrumentation specific to the low flow rates and high speeds of the micro engine was developed and used to document engine behavior. The second phase included converting the engine to operate on JP-8, completing JP-8-fueled steady-state testing, and comparing the performance of the JP-8-fueled engine to the nitromethane-methanol-fueled engine. The conversion was accomplished through a novel crankcase heating method; by heating the crankcase for an extended period of time, a flammable fuel-air mixture was generated in the crankcase scavenged engine, which greatly improved starting times. To aid in starting and steady-state operation, yttrium-zirconia impregnated resin (i.e. ceramic coating) was applied to the combustion surfaces. This also improved the starting times of the JP-8-fueled engine and ultimately allowed for a 34-second starting time. Finally, the steady-state data from both the nitromethane-methanol and JP-8-fueled micro engine were compared. The JP-8-fueled engine showed signs of increased engine friction while having higher indicated fuel conversion efficiency and a higher overall system efficiency. The minimal ability of JP-8 to cool the engine via evaporative effects, however, created the necessity of increased cooling air flow. The conclusion reached was that JP-8-fueled micro engines could be viable in application, but not without additional research being conducted on combustion phenomenon and cooling requirements.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In order to access the effect of the lakes in the atmospheric electrical field, measurements have been carried out near a large man-made lake in southern Portugal, the Alqueva reservoir, during the ALqueva hydro-meteorological EXperiment 2014. The purpose of these conjoint experiments was to study the impact of the Alqueva reservoir on the atmosphere, in particular on the local atmospheric electric environment by comparing measurements taken in the proximity of the lake. Two stations 10 km apart were used, as they were located up- and down-wind of the lake (Amieira and Parque Solar, respectively), in reference to the dominant northwestern wind direction. The up-wind station shows lower atmospheric electric potential gradient (PG) values than the ones observed in the down-wind station between 12 and 20 UTC. The difference in the atmospheric electric PG between the up-wind and the down-wind station is ~30 V/m during the day. This differential occurs mainly during the development of a lake breeze, between 10 and 18 UTC, as a consequence of the surface temperature gradient between the surrounding land and the lake water. In the analysis presented, a correlation is found between the atmospheric electric PG differences and both wind speed and temperature gradients over the lake, thus supporting the influence of the lake breeze over the observed PG variation in the two stations. Two hypotheses are provided to explain this observation: (1) The air that flows from the lake into the land station is likely to increase the local electric conductivity through the removal of ground dust and the transport of cleaner air from higher altitudes with significant light ion concentrations. With such an increase in conductivity, it is expected to see a reduction of the atmospheric electric PG; (2) the resulting air flow over the land station carries negative ions formed by wave splashing in the lake's water surface, as a result of the so-called balloelectric effect. These negative ions will form a space-charge density (SCD) that can reduce the atmospheric electric PG. A formulation is derived here in order to estimate the local SCD.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

ABSTRACT The Non-invasive Ventilation represents an alternative from ventilatory support, being frequently used in the treatment of respiratory failure. There are many complications associated with this technique, related to the pressure / air flow and the application of interfaces, being this one the focus of the article. The most appropriate interface selection allows a successful technique; the interface must be based on anatomical characteristics of the patient, cutaneous integrity and ventilation requirements. The Nurse plays a key role selecting the appropriate interface; technical monitoring and prevention of complications. The objective of the study is identify sensitive results to nursing care in the prevention of pressure ulcers (PPU) of the face, in adult and elderly submitted to NIV. This research was through EBSCO (CINAHL (Plus with Full Text) and MEDLINE (Plus with Full Text), with selection of full text articles between 2003-01-01 and 31.12.2013. We used the method of PI[C]O and was selected 13 articles from a total of 353. It was identified a set of specific interventions that prevent the appearing of pressure ulcer (PU), and according to Doran (2011), promotes sensitivity to nursing care results. The nursing interventions in adults with NIV have a direct impact on health outcomes, with preventing and resolving complications, with contribution in terms of effective disease control, adherence to the treatment regimen and consequent increase in life quality.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

For many people, a relatively large proportion of daily exposure to a multitude of pollutants may occur inside an automobile. A key determinant of exposure is the amount of outdoor air entering the cabin (i.e. air change or flow rate). We have quantified this parameter in six passenger vehicles ranging in age from 18 years to <1 year, at three vehicle speeds and under four different ventilation settings. Average infiltration into the cabin with all operable air entry pathways closed was between 1 and 33.1 air changes per hour (ACH) at a vehicle speed of 60 km/h, and between 2.6 and 47.3 ACH at 110 km/h, with these results representing the most (2005 Volkswagen Golf) and least air-tight (1989 Mazda 121) vehicles, respectively. Average infiltration into stationary vehicles parked outdoors varied between ~0 and 1.4 ACH and was moderately related to wind speed. Measurements were also performed under an air recirculation setting with low fan speed, while airflow rate measurements were conducted under two non-recirculate ventilation settings with low and high fan speeds. The windows were closed in all cases, and over 200 measurements were performed. The results can be applied to estimate pollutant exposure inside vehicles.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Unsteady numerical simulation of Rayleigh Benard convection heat transfer from a 2D channel is performed. The oscillatory behavior is attributed to recirculation of ascending and descending flows towards the core of the channel producing organized rolled motions. Variation of the parameters such as Reynolds number, channel outlet flow area and inclination of the channel are considered. Increasing Reynolds number (for a fixed Rayleigh number), delays the generation of vortices. The reduction in the outflow area leads to the later and the less vortex generation. As the time progresses, more vortices are generated, but the reinforced mean velocity does not let the eddies to enter the core of the channel. Therefore, they attach to the wall and reduce the heat transfer area. The inclination of the channel (both positive and negative) induces the generated vortices to get closer to each other and make an enlarged vortex.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Double-pass counter flow v-grove collector is considered one of the most efficient solar air-collectors. In this design of the collector, the inlet air initially flows at the top part of the collector and changes direction once it reaches the end of the collector and flows below the collector to the outlet. A mathematical model is developed for this type of collector and simulation is carried out using MATLAB programme. The simulation results were verified with three distinguished research results and it was found that the simulation has the ability to predict the performance of the air collector accurately as proven by the comparison of experimental data with simulation. The difference between the predicted and experimental results is, at maximum, approximately 7% which is within the acceptable limit considering some uncertainties in the input parameter values to allow comparison. A parametric study was performed and it was found that solar radiation, inlet air temperature, flow rate and length has a significant effect on the efficiency of the air collector. Additionally, the results are compared with single flow V-groove collector.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Double-pass counter flow v-grove collector is considered one of the most efficient solar air-collectors. In this design of the collector, the inlet air initially flows at the top part of the collector and changes direction once it reaches the end of the collector and flows below the collector to the outlet. A mathematical model is developed for this type of collector and simulation is carried out using MATLAB programme. The simulation results were verified with three distinguished research results and it was found that the simulation has the ability to predict the performance of the air collector accurately as proven by the comparison of experimental data with simulation. The difference between the predicted and experimental results is, at maximum, approximately 7% which is within the acceptable limit considering some uncertainties in the input parameter values to allow comparison. A parametric study was performed and it was found that solar radiation, inlet air temperature, flow rate and length have a significant effect on the efficiency of the air collector. Additionally, the results are compared with single flow V-groove collector.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The transition from a steady to an unsteady flow induced by an adiabatic fin on the sidewall of a differentially heated air-filled cavity is numerically investigated. Numerical simulations have been performed over the range of Rayleigh numbers from Ra = 105–109. The temporal development and spatial structures of natural convection flows in the cavity with a fin are described. It has been demonstrated that the fin may induce the transition to an unsteady flow and the critical Rayleigh number for the occurrence of the transition is between 3.72 × 106 and 3.73 × 106. Furthermore, the peak frequencies of the oscillations triggered by different mechanisms are obtained through spectral analysis. It has been found that the flow rate through the cavity with a fin is larger than that without a fin under the unsteady flow, indicating that the fin may improve the unsteady flow in the cavity.