936 resultados para Adhesive Bonding
Resumo:
OBJECTIVE: To determine if the results of resin-dentin microtensile bond strength (µTBS) is correlated with the outcome parameters of clinical studies on non-retentive Class V restorations. METHODS: Resin-dentin µTBS data were obtained from one test center; the in vitro tests were all performed by the same operator. The µTBS testing was performed 8h after bonding and after 6 months of storing the specimens in water. Pre-test failures (PTFs) of specimens were included in the analysis, attributing them a value of 1MPa. Prospective clinical studies on cervical restorations (Class V) with an observation period of at least 18 months were searched in the literature. The clinical outcome variables were retention loss, marginal discoloration and marginal integrity. Furthermore, an index was formulated to be better able to compare the laboratory and clinical results. Estimates of adhesive effects in a linear mixed model were used to summarize the clinical performance of each adhesive between 12 and 36 months. Spearman correlations between these clinical performances and the µTBS values were calculated subsequently. RESULTS: Thirty-six clinical studies with 15 adhesive/restorative systems for which µTBS data were also available were included in the statistical analysis. In general 3-step and 2-step etch-and-rinse systems showed higher bond strength values than the 2-step/3-step self-etching systems, which, however, produced higher values than the 1-step self-etching and the resin modified glass ionomer systems. Prolonged water storage of specimens resulted in a significant decrease of the mean bond strength values in 5 adhesive systems (Wilcoxon, p<0.05). There was a significant correlation between µTBS values both after 8h and 6 months of storage and marginal discoloration (r=0.54 and r=0.67, respectively). However, the same correlation was not found between µTBS values and the retention rate, clinical index or marginal integrity. SIGNIFICANCE: As µTBS data of adhesive systems, especially after water storage for 6 months, showed a good correlation with marginal discoloration in short-term clinical Class V restorations, longitudinal clinical trials should explore whether early marginal staining is predictive for future retention loss in non-carious cervical restorations.
Resumo:
The joint between two lanes of asphalt pavement is often the first area of a roadway which shows signs of deterioration and requires maintenance. As the final lift of hot asphalt is being placed in a construction project, it is being forced p against the adjoining lane of cold asphalt, forming the longitudinal joint. The mating of the two lanes, to form a high quality seal, is often not fully successful and later results in premature stripping or raveling as water enters the unsealed joint. The application of a hot poured rubberized asphaltic joint sealant along the joint face in the final stage of construction should help to form a watertight joint seal. A new product, especially formulated for the longitudinal joint in asphalt pavements was proposed to improve joint sealing. The following describes the experimental application of the new product, Crafco, PN 34524.
Resumo:
The Iowa Department of Transportation (IaDOT) was interested in investigating the use of epoxy adhesive anchorages for the attachment of posts used in the BR27C combination bridge rail system. Alternative anchorage concepts were developed using a modified version of the ACI 318-11 procedures for embedded anchor design. Four design concepts were developed for review by IaDOT, including: (1) a four-bolt square anchorage, (2) a four-bolt spread anchorage, (3) a twobolt centered anchorage, and (4) a two-bolt offset anchorage. IaDOT representatives selected the four-bolt spread anchorage and the two-bolt offset anchorage as the preferred designs for evaluation. In addition to these two proposed configurations, IaDOT also requested that the researchers evaluate a third option that had been previously installed on the US-20 bridge near Hardin, IA. The proposed alternative anchorages and the original cast-in-place anchorage for the BR27C combination bridge rail were evaluated through dynamic component testing. The test of the original cast-in-place anchorage was used a baseline for comparison with the alternative designs. Test no. IBP-1 of the original cast-in-place anchorage developed a peak load of 22.9 kips (101.9 kN) at a deflection of 1.5 in. (38 mm). All three of the tested alternative anchorages provided greater load capacity than the original cast-in-place design and were deemed acceptable surrogates. Of the three alternative designs, the two-bolt offset design was deemed the best option.
Resumo:
Purpose: More than five hundred million direct dental restorations are placed each year worldwide. In about 55% of the cases, resin composites or compomers are used, and in 45% amalgam. The longevity of posterior resin restorations is well documented. However, data on resin composites that are placed without enamel/dentin conditioning and resin composites placed with self-etching adhesive systems are missing. Material and Methods: The database SCOPUS was searched for clinical trials on posterior resin composites without restricting the search to the year of publication. The inclusion criteria were: (1) prospective clinical trial with at least 2 years of observation; (2) minimum number of restorations at last recall = 20; (3) report on dropout rate; (4) report of operative technique and materials used; (5) utilization of Ryge or modified Ryge evaluation criteria. For amalgam, only those studies were included that directly compared composite resin restorations with amalgam. For the statistical analysis, a linear mixed model was used with random effects to account for the heterogeneity between the studies. P-values under 0.05 were considered significant. Results: Of the 373 clinical trials, 59 studies met the inclusion criteria. In 70% of the studies, Class II and Class I restorations had been placed. The overall success rate of composite resin restorations was about 90% after 10 years, which was not different from that of amalgam. Restorations with compomers had a significantly lower longevity. The main reason for replacement were bulk fractures and caries adjacent to restorations. Both of these incidents were infrequent in most studies and accounted only for about 6% of all replaced restorations after 10 years. Restorations with macrofilled composites and compomer suffered significantly more loss of anatomical form than restorations with other types of material. Restorations that were placed without enamel acid etching and a dentin bonding agent showed significantly more marginal staining and detectable margins compared to those restorations placed using the enamel-etch or etch-and-rinse technique; restorations with self-etching systems were between the other groups. Restorations with compomer suffered significantly more chippings (repairable fracture) than restorations with other materials, which did not statistically differ among each other. Restorations that were placed with a rubber-dam showed significantly fewer material fractures that needed replacement, and this also had a significant effect on the overall longevity. Conclusion: Restorations with hybrid and microfilled composites that were placed with the enamel-etching technique and rubber-dam showed the best overall performance; the longevity of these restorations was similar to amalgam restorations. Compomer restorations, restorations placed with macrofilled composites, and resin restorations with no-etching or self-etching adhesives demonstrated significant shortcomings and shorter longevity.
Resumo:
Objectives: To evaluate the shear bond strength and site of failure of brackets bonded to dry and wet enamel. Study design: 50 teeth were divided into ten groups of 5 teeth each (10 surfaces). In half the groups enamel was kept dry before bonding, and in the other half distilled water was applied to wet the surface after etching. The following groups were established: 1)Acid/Transbond-XT (dry/wet) XT; 2) Transbond Plus Self Etching Primer (TSEP)/Transbond-XT paste (dry/wet); 3) Concise (dry), Transbond MIP/Concise (wet), 4) FujiOrtho-LC (dry/wet); 5) SmartBond (dry/wet). Brackets were bonded to both buccal and lingual surfaces. Specimens were stored in distilled water (24 hours at 37ºC) and thermocycled. Brackets were debonded using a Universal testing machine (cross-head speed 1 mm/min). Failure sites were classified using a stereomicroscope. Results: No significant differences in bond strength were detected between the adhesives under wet and dry conditions except for Smart- Bond, whose bond strength was significantly lower under dry conditions. For all the adhesives most bond failures were of mixed site location except for Smartbond, which failed at the adhesive-bracket interface. Conclusions: Under wet conditions the bonding capacity of the adhesives tested was similar than under dry conditions, with the exception of SmartBond which improved under wet conditions
Resumo:
Fibre-reinforced composite (FRC) root canal posts are suggested to have biomechanical benefits over traditional metallic posts, but they lack good adhesion to resin composites. The aim of this series of studies was to evaluate the adhesion of individually formed fibre-reinforced composite material to composite resin and dentin, as well as some mechanical properties. Flexural properties were evaluated and compared between individually formed FRC post material and different prefabricated posts. The depth of polymerization of the individually formed FRC post material was evaluated with IR spectrophotometry and microhardness measurements, and compared to that of resin without fibres. Bonding properties of the individually formed FRC post to resin cements and dentin were tested using Pull-out- and Push-out-force tests, evaluated with scanning electron microscopy, and compared to those of prefabricated FRC and metal posts. Load-bearing capacity and microstrain were evaluated and failure mode assessment was made on incisors restored with individually formed FRC posts of different structures and prefabricated posts. The results of these studies show that the individually polymerized and formed FRC post material had higher flexural properties compared to the commercial prefabricated FRC posts. The individually polymerized FRC material showed almost the same degree of conversion after light polymerization as monomer resin without fibres. Moreover, it was found that the individually formed FRC post material with a semiinterpenetrating polymer network (IPN) polymer matrix bonded better to composite resin luting cement, than did the prefabricated posts with a cross-linked polymer matrix. Furthermore, it was found that, contrary to the other posts, there were no adhesive failures between the individually formed FRC posts and composite resin luting cement. This suggests better interfacial adhesion of cements to these posts. Although no differences in load-bearing capacity or microstrain could be seen, the incisors restored with individually formed FRC posts with a hollow structure showed more favourable failures compared to other prefabricated posts. These studies suggest that it is possible to use individually formed FRC material with semi-IPN polymer matrix as root canal post material. They also indicate that there are benefits especially regarding the bonding properties to composite resin and dentin with this material compared to prefabricated FRC post material with a cross-linked matrix. Furthermore, clinically more repairable failures were found with this material compared to those of prefabricated posts.
Resumo:
Through an interplay between scanning tunneling microscopy (STM) and density functional theory (DFT) calculations, we show that bridging oxygen vacancies are the active nucleation sites for Au clusters on the rutile TiO2(110) surface. We find that a direct correlation exists between a decrease in density of vacancies and the amount of Au deposited. From the DFT calculations we find that the oxygen vacancy is indeed the strongest Au binding site. We show both experimentally and theoretically that a single oxygen vacancy can bind 3 Au atoms on average. In view of the presented results, a new growth model for the TiO2(110) system involving vacancy-cluster complex diffusion is presented.
Resumo:
This study has shown that Eucalyptus tar and creosote can be used in phenolic adhesive formulations (resols) for wood products bonding. Some adhesives were prepared substituting 0; 17.7; 35.0 and 67.0% of the phenol by anhydrous tar and 0; 15.0 e 28.5% by creosote. In gluing Brazilian pine veneers, eucalypt tar and creosote based adhesives required longer pressing times for curing than conventional phenol-formaldehyde adhesives. By using 13C NMR, the number of carbons in side chains and hydroxyl, carbonyl, carboxyl and methoxyl groups related to 100 aromatic rings could be estimated in tar and creosote. In creosote, after reaction with excess formaldehyde in alkaline medium, only 0,28 hydroxymethyl groups was detected per phenolic ring. This low amount of hydroxymethylation explains the lack of reactivity in curing observed when creosote was introduced in a standard adhesive formulation.
Resumo:
A rapid, expedient and enantioselective method for the synthesis of beta-hydroxy amines and monosubstituted aziridines in up to 99% e.e., via asymmetric transfer hydrogenation of a-amino ketones and cyclisation through treatment with tosyl chloride and base, is described. (1R,2R)-N-(para-toluenesulfonyl)-1,2-ethylenediamine with formic acid has been utilised as a ligand for the Ruthenium (II) catalysed enantioselective transfer hydrogenation of the ketones.The chiral 2-methyl aziridine, which is a potentially more efficient bonding agent for Rocket Solid Propellant has been successfully achieved.
Resumo:
Lignin was used as a natural adhesive to manufacture Vitis vinifera fiberboards. The fiberboards were produced at laboratory scale by adding powdered lignin to material that had previously been steam-exploded under optimized pretreatment and pressing conditions. The kraft lignin used was washed several times with an acidic solution to eliminate any contaminants and low molecular weight compounds. This research studied the effects of amounts of lignin ranging from 5% to 20% on the properties of Vitis vinifera fiberboards. The fiberboard properties evaluated were density, water resistance in terms of thickness swelling, water absorption, and the mechanical properties in terms of modulus of rupture, modulus of elasticity, and internal bond. Results showed that fiberboards made from Vitis vinifera without lignin addition had weaker mechanical properties. However, the fiberboards obtained using acid-washed kraft lignin as a natural adhesive had good mechanical and water resistance properties that fully satisfied the relevant standard specifications
Resumo:
A new Cu(II) trimers, [Cu3(dcp)2(H2O)8]. 4DMF, with the ligand 3,5-pyrazoledicarboxylic acid monohydrate (H3dcp) has been prepared by solvent method. Its solid-state structure has been characterized by elemental analysis, thermal analysis (TGA and DSC), and single crystal X-ray diffraction. X-ray crystallographic studies reveal that this complex has extended 1-D,2-D and 3-D supramolecular architectures directed by weak interactions (hydrogen bond and aromatic π-π stacking interaction) leading to a sandwich solid-state structure.
Resumo:
RNA is essential for all living organisms. It has important roles in protein synthesis, controlling gene expression as well as catalyzing biological reactions. Chemically RNA is a very stable molecule, although in biological systems many agents catalyze the cleavage of RNA, such as naturally occurring enzymes and ribozymes. Much effort has been put in the last decades in developing highly active artificial ribonucleases since such molecules could have potential in the therapeutic field and provide tools for molecular biology. Several potential catalysts have emerged, but usually detailed cleavage mechanism remains unresolved. This thesis is aimed at clarifying mechanistic details of the cleavage and isomerization of RNA by using simpler nucleoside models of RNA. The topics in the experimental part cover three different studies, one concerning the mechanism of catalysis by large ribozymes, one dealing with the reactivity of modified and unmodified RNA oligonucleotides and one showing an efficient catalysis of the cleavage and isomerization of an RNA phosphodiester bond by a dinuclear metal ion complex. A review of the literature concerning stabilization of the phosphorane intermediate of the hydrolysis and isomerization of RNA phosphodiester bond is first presented. The results obtained in the experimental work followed by mechanistic interpretations are introduced in the second part of the thesis. Especially the significance of hydrogen bonding interactions is discussed.