926 resultados para Addition chains
Resumo:
A new procedure for the identification of regular secondary structures using a C-alpha trace has identified 659 pi-helices in 3582 protein chains, solved at high resolution. Taking advantage of this significantly expanded database of pi-helices, we have analysed the functional and structural roles of helices and determined the position-wise amino acid propensity within and around them. These helices range from 5 to 18 residues in length with the average twist and rise being 85.2 +/- 7.2 and 1.28 +/- 0.31 angstrom, respectively. A total of 546 (similar to 83%) out of 659 pi-helices occur in conjunction with alpha-helices, with 101 pi-helices being interspersed between two alpha-helices. The majority of interspersed pi-helices were found to be conserved across a large number of structures within a protein family and produce a significant bend in the overall helical segment as well as local distortions in the neighbouring a-helices. The presence of a pi-helical fragment leads to appropriate orientation of the constituent residues, so as to facilitate favourable interactions and also help in proper folding of the protein chain. In addition to intra helical 6 -> 1 N H center dot center dot center dot O hydrogen bonds, pi-helices are also stabilized by several other non-bonded interactions. pi-Helices show distinct positional residue preferences, which are different from those of a-helices.
Resumo:
The use of copolymer and polymer blends widened the possibility of creating materials with multilayered architectures. Hierarchical polymer systems with a wide array of micro and nanostructures are generated by thermally induced phase separation (TIPS) in partially miscible polymer blends. Various parameters like the interaction between the polymers, concentration, solvent/non-solvent ratio, and quenching temperature have to be optimized to obtain these micro/nanophase structures. Alternatively, the addition of nanoparticles is another strategy to design materials with desired hetero-phase structures. The dynamics of the polymer nanocomposite depends on the statistical ordering of polymers around the nanoparticle, which is dependent on the shape of the nanoparticle. The entropic loss due to deformation of polymer chains, like the repulsive interactions due to coiling and the attractive interactions in the case of swelling has been highlighted in this perspective article. The dissipative particle dynamics has been discussed and is correlated with the molecular dynamics simulation in the case of polymer blends. The Cahn Hillard Cook model on variedly shaped immobile fillers has shown difference in the propagation of the composition wave. The nanoparticle shape has a contributing effect on the polymer particle interaction, which can change the miscibility window in the case of these phase separating polymer blends. Quantitative information on the effect of spherical particles on the demixing temperature is well established and further modified to explain the percolation of rod shaped particles in the polymer blends. These models correlate well with the experimental observations in context to the dynamics induced by the nanoparticle in the demixing behavior of the polymer blend. The miscibility of the LCST polymer blend depends on the enthalpic factors like the specific interaction between the components, and the solubility product and the entropic losses occurring due to the formation of any favorable interactions. Hence, it is essential to assess the entropic and enthalpic interactions induced by the nanoparticles independently. The addition of nanoparticles creates heterogeneity in the polymer phase it is localized. This can be observed as an alteration in the relaxation behavior of the polymer. This changes the demixing behavior and the interaction parameter between the polymers. The compositional changes induced due to the incorporation of nanoparticles are also attributed as a reason for the altered demixing temperature. The particle shape anisotropy causes a direction dependent depletion, which changes the phase behavior of the blend. The polymer-grafted nanoparticles with varying grafting density show tremendous variation in the miscibility of the blend. The stretching of the polymer chains grafted on the nanoparticles causes an entropy penalty in the polymer blend. A comparative study on the different shaped particles is not available up to date for understanding these aspects. Hence, we have juxtaposed the various computational studies on nanoparticle dynamics, the shape effect of NPs on homopolymers and also the cases of various polymer blends without nanoparticles to sketch a complete picture on the effect of various particles on the miscibility of LCST blends.
Resumo:
Vanadium Oxide has been a frontrunner in the field of oxide electronics because of its metal-insulator transition (MIT). The interplay of different structures of VO2 has played a crucial role in deciding the magnitude of the first order MIT. Substitution doping has been found to introduce different polymorphs of VO2. Hence the role of substitution doping in stabilizing the competing phases of VO2 in the thin film form remains underexplored. Consequently there have been reports both discounting and approving such a stabilization of competing phases in VO2. It is reported in the literature that the bandwidth of the hysteresis and transition temperature of VO2 can be tuned by substitutional doping of VO2 with W. In this work, we have adopted a novel technique called, Ultrasonic Nebulized Spray Pyrolysis of Aqueous Combustion Mixture (UNSPACM) to deposit VO2 and W- doped VO2 as thin films. XRD and Raman spectroscopy were used to investigate the role of tungsten on the structure of VO2 thin films. Morphology of the thin films was found to be consisting of globular and porous nanoparticles of size similar to 20nm. Transition temperature decreased with the addition of W. We found that for 2.0 at % W doping in VO2, the transition temperature has reduced from 68 degrees C to 25 degrees C. It is noted that W-doping in the process of reducing the transition temperature, alters the local structure and also increases room temperature carrier concentration. (c) 2016 Author(s).
Resumo:
Minor yttrium addition can improve the glass-forming ability of Cu-Zr-Al ternary alloys via suppression of the growth of eutectic clusters. Yttrium addition also makes the room temperature ductility of the alloys decrease, and both the compressive strength and elastic strain limits increase slightly.
Resumo:
An attempt has been made to prepare a YBa2Cu3O 7-δ (YBCO) thin film doped with ferromagnetic CoFe 2O4. Transmission electron microscopy of the resultant samples shows, however, that Y(Fe, Co)O3 forms as a nanoparticulate dispersion throughout the film in preference to CoFe2O4, leaving the YBCO yttrium deficient. As a consequence, the superconducting properties of the sample are poor, with a self-field critical current density of just 0.25 MA cm-2. Magnetic measurements indicate however that the Y(Fe, Co)O3 content, together with any other residual phases, is also ferromagnetic, and some interesting features are present in the in-field critical current behaviour, including a reduced dependence on applied field and a strong c-axis peak in the angular dependence. The work points the way towards future attempts utilising YFeO3 as an effective ferromagnetic pinning additive for YBCO. © 2009 Elsevier B.V. All rights reserved.
Resumo:
A kind of novel Ti-based composites was developed by introducing different amounts of carbon element to the Ti-50 Cu-23 Ni-20 Sn-7 bulk metallic glass forming alloys. The thermal stability and microstructural evolution of the composites were investigated. Room temperature compression tests reveal that the composite samples with 1% and 3% (mass fraction) carbon additions have higher fracture strength and obvious plastic strain of 2 195 MPa, 3.1% and 1 913 MPa, 1.3% respectively, compared with those of the corresponding carbon-free Ti-50 Ni-20 Cu-23 Sn-7 alloys. The deformation mechanisms of the composites with improved mechanical properties were also discussed.
Resumo:
The influence of the momentum addition, which may be associated with the average or fluctuation transverse component of the magnetic field or others, on the acceleration the solar wind or stellar wind is studied in a local streamtube. The results show that the larger the momentum addition the stronger the acceleration of the wind. For example, if the typical transverse magnetic field is about 0.1 of the longitudinal field, the velocity of the solar wind at 1 AU may be increased by 40%. The coronal hole may be considered as a streamtube, the presence of a high stream from the coronal hole may be explained by the existence of an average or fluctuation transverse magnetic field in the streamtube. A similar conclusion may be applied to the polar region, where the velocity of the solar wind will be larger than elsewhere as if there is a transverse component of magnetic field, as well as to the stellar wind. The influence of other parameters on the acceleration of the solar wind is also discussed. From the viewpoint of the solar wind mechanism, the present paper shows that the momentum addition in the subsonic flow region can increase the velocity of the solar wind at 1 AU.
Resumo:
Issue in Honor of Prof. Paweł Kafarski
Resumo:
396 : il., graf.
Resumo:
"Click" chemistry has become an efficient avenue to unimolecular polymeric nanoparticles through the self-crosslinking of individual polymer chains containing appropriate functional groups. Herein we report the synthesis of ultra-small (7 nm in size) polymethyl methacrylate (PMMA) nanoparticles (NPs) by the "metal-free" cross-linking of PMMA-precursor chains prepared by reversible addition-fragmentation chain transfer (RAFT) polymerization containing beta-ketoester functional groups. Intramolecular collapse was performed by the one-pot reaction of beta-ketoester moieties with alkyl diamines in tetrahydrofurane at r.t. (i.e., by enamine formation). The collapsing process was followed by size exclusion chromatography and by nuclear magnetic resonance spectroscopy. The size of the resulting PMMA-NPs was determined by dynamic light scattering. Enamine "click" chemistry increases the synthetic toolbox for the efficient synthesis of metal-free, ultra-small polymeric NPs.