856 resultados para Adaptive Control
Resumo:
Establishing a persistent presence in the ocean with an Autonomous Underwater Vehicle capable of observing temporal variability of large-scale ocean processes requires a unique sensor platform. In this paper, we examine the utility of Lagrangian profiling floats for such extended deployments. We propose a strategy that utilizes ocean model predictions to facilitate a basic level of autonomy to achieve general control of this minimally-actuated underwater vehicle. We extend experimentally validated techniques for utilising ocean current models to control under-actuated autonomous underwater vehicles by presenting this investigation into the application of these methods on profiling floats. With the appropriate vertical actuation, and utilising spatiotemporal variations in water speed and direction, we show that broad controllability results can be met. First, we apply an A* planner to a local controllability map generated from predictions of ocean currents. This computes a path between start and goal waypoints that has the highest likelihood of successful execution over a given duration. The computed depth plan is generated with a model predictive controller, and selects the depths for the vehicle so that ambient currents guide it toward the goal. Mission constraints are included to simulate and motivate a practical data collection mission. Results are presented in simulation for a mission off the coast of Los Angeles, CA USA, that show surprising results in the ability of a drifting vehicle to maintain a prescribed course and reach a desired location.
Resumo:
A priority when designing control strategies for autonomous underwater vehicles is to emphasize their cost of implementation on a real vehicle and at the same time to minimize a prescribed criterion such as time, energy, payload or combination of those. Indeed, the major issue is that due to the vehicles' design and the actuation modes usually under consideration for underwater platforms the number of actuator switchings must be kept to a small value to ensure feasibility and precision. This constraint is typically not verified by optimal trajectories which might not even be piecewise constants. Our goal is to provide a feasible trajectory that minimizes the number of switchings while maintaining some qualities of the desired trajectory, such as optimality with respect to a given criterion. The one-sided Lipschitz constant is used to derive theoretical estimates. The theory is illustrated on two examples, one is a fully actuated underwater vehicle capable of motion in six degrees-of-freedom and one is minimally actuated with control motions constrained to the vertical plane.
Resumo:
This paper reports outcomes of a pilot study to develop a conceptual framework to allow people to retrofit a building-layer to gain better control of their own built- environments. The study was initiated by the realisation that discussions surrounding the improvement of building performances tend to be about top-down technological solutions rather than to help and encourage bottom-up involvement of building-users. While users are the ultimate beneficiaries and their feedback is always appreciated, their direct involvements in managing buildings would often be regarded as obstruction or distraction. This is largely because casual interventions by uninformed building-users tend to disrupt the system. Some earlier researches showed however that direct and active participation of users could improve the building performance if appropriate training and/or systems were introduced. We also speculate this in long run would also make the built environment more sustainable. With this in mind, we looked for opportunities to retrofit our own office with an interactive layer to study how we could introduce ad-hoc systems for building-users. The aim of this paper is to describe our vision and initial attempts followed by discussion.
Resumo:
Private data stored on smartphones is a precious target for malware attacks. A constantly changing environment, e.g. switching network connections, can cause unpredictable threats, and require an adaptive approach to access control. Context-based access control is using dynamic environmental information, including it into access decisions. We propose an "ecosystem-in-an-ecosystem" which acts as a secure container for trusted software aiming at enterprise scenarios where users are allowed to use private devices. We have implemented a proof-of-concept prototype for an access control framework that processes changes to low-level sensors and semantically enriches them, adapting access control policies to the current context. This allows the user or the administrator to maintain fine-grained control over resource usage by compliant applications. Hence, resources local to the trusted container remain under control of the enterprise policy. Our results show that context-based access control can be done on smartphones without major performance impact.
Resumo:
Several approaches have been introduced in the literature for active noise control (ANC) systems. Since the filtered-x least-mean-square (FxLMS) algorithm appears to be the best choice as a controller filter, researchers tend to improve performance of ANC systems by enhancing and modifying this algorithm. This paper proposes a new version of the FxLMS algorithm, as a first novelty. In many ANC applications, an on-line secondary path modeling method using white noise as a training signal is required to ensure convergence of the system. As a second novelty, this paper proposes a new approach for on-line secondary path modeling on the basis of a new variable-step-size (VSS) LMS algorithm in feed forward ANC systems. The proposed algorithm is designed so that the noise injection is stopped at the optimum point when the modeling accuracy is sufficient. In this approach, a sudden change in the secondary path during operation makes the algorithm reactivate injection of the white noise to re-adjust the secondary path estimate. Comparative simulation results shown in this paper indicate the effectiveness of the proposed approach in reducing both narrow-band and broad-band noise. In addition, the proposed ANC system is robust against sudden changes of the secondary path model.
Resumo:
In practical cases for active noise control (ANC), the secondary path has usually a time varying behavior. For these cases, an online secondary path modeling method that uses a white noise as a training signal is required to ensure convergence of the system. The modeling accuracy and the convergence rate are increased when a white noise with a larger variance is used. However, the larger variance increases the residual noise, which decreases performance of the system and additionally causes instability problem to feedback structures. A sudden change in the secondary path leads to divergence of the online secondary path modeling filter. To overcome these problems, this paper proposes a new approach for online secondary path modeling in feedback ANC systems. The proposed algorithm uses the advantages of white noise with larger variance to model the secondary path, but the injection is stopped at the optimum point to increase performance of the algorithm and to prevent the instability effect of the white noise. In this approach, instead of continuous injection of the white noise, a sudden change in secondary path during the operation makes the algorithm to reactivate injection of the white noise to correct the secondary path estimation. In addition, the proposed method models the secondary path without the need of using off-line estimation of the secondary path. Considering the above features increases the convergence rate and modeling accuracy, which results in a high system performance. Computer simulation results shown in this paper indicate effectiveness of the proposed method.
Resumo:
This paper presents an adaptive metering algorithm for enhancing the electronic screening (e-screening) operation at truck weight stations. This algorithm uses a feedback control mechanism to control the level of truck vehicles entering the weight station. The basic operation of the algorithm allows more trucks to be inspected when the weight station is underutilized by adjusting the weight threshold lower. Alternatively, the algorithm restricts the number of trucks to inspect when the station is overutilized to prevent queue spillover. The proposed control concept is demonstrated and evaluated in a simulation environment. The simulation results demonstrate the considerable benefits of the proposed algorithm in improving overweight enforcement with minimal negative impacts on nonoverweighed trucks. The test results also reveal that the effectiveness of the algorithm improves with higher truck participation rates in the e-screening program.
Resumo:
This paper proposes a unique and innovative approach to integrate transit signal priority control into a traffic adaptive signal control strategy. The proposed strategy was named OSTRAC (Optimized Strategy for integrated TRAffic and TRAnsit signal Control). The cornerstones of OSTRAC include an online microscopic traffic f low prediction model and a Genetic Algorithm (GA) based traffic signal timing module. A sensitivity analysis was conducted to determine the critical GA parameters. The developed traffic f low model demonstrated reliable prediction results through a test. OSTRAC was evaluated by comparing its performance to three other signal control strategies. The evaluation results revealed that OSTRAC efficiently and effectively reduced delay time of general traffic and also transit vehicles.
Resumo:
The main aim of this paper is to describe an adaptive re-planning algorithm based on a RRT and Game Theory to produce an efficient collision free obstacle adaptive Mission Path Planner for Search and Rescue (SAR) missions. This will provide UAV autopilots and flight computers with the capability to autonomously avoid static obstacles and No Fly Zones (NFZs) through dynamic adaptive path replanning. The methods and algorithms produce optimal collision free paths and can be integrated on a decision aid tool and UAV autopilots.
Resumo:
Purpose Virally mediated head and neck cancers (VMHNC) often present with nodal involvement and are highly radioresponsive, meaning that treatment plan adaptation during radiotherapy (RT) in a subset of patients is required. We sought to determine potential risk profiles and a corresponding adaptive treatment strategy for these patients. Methodology 121 patients with virally mediated, node positive nasopharyngeal (Epstein Barr Virus positive) or oropharyngeal (Human Papillomavirus positive) cancers, receiving curative intent RT were reviewed. The type, frequency and timing of adaptive interventions, including source-to-skin distance (SSD) corrections, re-scanning and re-planning, were evaluated. Patients were reviewed based on the maximum size of the dominant node to assess the need for plan adaptation. Results Forty-six patients (38%) required plan adaptation during treatment. The median fraction at which the adaptive intervention occurred was 26 for SSD corrections and 22 for re-planning CTs. A trend toward 3 risk profile groupings was discovered: 1) Low risk with minimal need (< 10%) for adaptive intervention (dominant pre-treatment nodal size of ≤ 35 mm), 2) Intermediate risk with possible need (< 20%) for adaptive intervention (dominant pre-treatment nodal size of 36 mm – 45 mm) and 3) High-risk with increased likelihood (> 50%) for adaptive intervention (dominant pre-treatment nodal size of ≥ 46 mm). Conclusion In this study, patients with VMHNC and a maximum dominant nodal size of > 46 mm were identified at a higher risk of requiring re-planning during a course of definitive RT. Findings will be tested in a future prospective adaptive RT study.
Resumo:
In this paper we describe cooperative control algorithms for robots and sensor nodes in an underwater environment. Cooperative navigation is defined as the ability of a coupled system of autonomous robots to pool their resources to achieve long-distance navigation and a larger controllability space. Other types of useful cooperation in underwater environments include: exchange of information such as data download and retasking; cooperative localization and tracking; and physical connection (docking) for tasks such as deployment of underwater sensor networks, collection of nodes and rescue of damaged robots. We present experimental results obtained with an underwater system that consists of two very different robots and a number of sensor network modules. We present the hardware and software architecture of this underwater system. We then describe various interactions between the robots and sensor nodes and between the two robots, including cooperative navigation. Finally, we describe our experiments with this underwater system and present data.
Resumo:
The paper introduces the design of robust current and voltage control algorithms for a grid-connected three-phase inverter which is interfaced to the grid through a high-bandwidth three-phase LCL filter. The algorithms are based on the state feedback control which have been designed in a systematic approach and improved by using oversampling to deal with the issues arising due to the high-bandwidth filter. An adaptive loop delay compensation method has also been adopted to minimize the adverse effects of loop delay in digital controller and to increase the robustness of the control algorithm in the presence of parameter variations. Simulation results are presented to validate the effectiveness of the proposed algorithm.
Resumo:
This paper explores the use of subarrays as array elements. Benefits of such a concept include improved gain in any direction without significantly increasing the overall size of the array and enhanced pattern control. The architecture for an array of subarrays will be discussed via a systems approach. Individual system designs are explored in further details and proof of principle is illustrated through a manufactured examples.
Resumo:
This article presents an approach to improve and monitor the behavior of a skid-steering rover on rough terrains. An adaptive locomotion control generates speeds references to avoid slipping situations. An enhanced odometry provides a better estimation of the distance travelled. A probabilistic classification procedure provides an evaluation of the locomotion efficiency on-line, with a detection of locomotion faults. Results obtained with a Marsokhod rover are presented throughout the paper
Resumo:
The objective of this experimental study is to capture the dynamic temporal processes that occur in changing work settings and to test how work control and individuals' motivational predispositions interact to predict reactions to these changes. To this aim, we examine the moderating effects of global self-determined and non-self-determined motivation, at different levels of work control, on participants' adaptation and stress reactivity to changes in workload during four trials of an inbox activity. Workload was increased or decreased at Trial 3, and adaptation to this change was examined via fluctuations in anxiety, coping, motivation, and performance. In support of the hypotheses, results revealed that, for non-self-determined individuals, low work control was stress-buffering and high work control was stress-exacerbating when predicting anxiety and intrinsic motivation. In contrast, for self-determined individuals, high work control facilitated the adaptive use of planning coping in response to a change in workload. Overall, this pattern of results demonstrates that, while high work control was anxiety-provoking and demotivating for non-self-determined individuals, self-determined individuals used high work control to implement an adaptive antecedent-focused emotion regulation strategy (i.e., planning coping) to meet situational demands. Other interactive effects of global motivation emerged on anxiety, active coping, and task performance. These results and their practical implications are discussed.