972 resultados para ALKALINE ISOMERIZATION
Resumo:
An extracellular pectin lyase secreted by Fusarium decemcellulare MTCC 2079 under solid state fermentation condition has been purified to electrophoretic homogeniety by using ammonium sulfate fractionation, carboxymethyl cellulose and gel filtration (Sephadex G-100) column chromatographies. The purified enzyme showed single protein band corresponding to molecular mass 45 +/- 01 kDa on sodium dodecyl sulfate polyacrylamide gel electrophoresis. The enzyme had maximum activity at pH 9.0 and showed maximum stability in the pH range of 9.0-12.0. The optimum temperature of the purified enzyme was 50 degrees C and it showed maximum stability upto 40 degrees C. The energy of activation for the thermal denaturation (Ea) was 59.06 kJ mol(-1) K-1. The K-m and k(cat) values using citrus pectin as the substrate were 0.125mgml(-1) and 72.9 s(-1) in 100mM sodium carbonate buffer pH 9.0 at 50 degrees C. The biophysical studies on pectin lyase showed that its secondary structure belongs to alpha+beta class of protein with comparatively less of beta-sheets. Purified pectin lyase showed efficient retting of Crotolaria juncea fibers.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
A pretreatment with microwave irradiation was applied to enhance enzyme hydrolysis of corn straw and rice husk immersed in water, aqueous glycerol or alkaline glycerol. Native and pretreated solids underwent enzyme hydrolysis using the extract obtained from the fermentation of Myceliophthora heterothallica, comparing its efficiency with that of the commercial cellulose cocktail Celluclast (R). The highest saccharification yields, for both corn straw and rice husk, were attained when biomass was pretreated in alkaline glycerol, method that has not been previously reported in literature. Moreover, FTIR, TG and SEM analysis revealed a more significant modification in the structure of corn straw subjected to this pretreatment.Highest global yields were attained with the crude enzyme extract, which might be the result of its content in a great variety of hydrolytic enzymes, as revealed zymogram analysis. Moreover, its hydrolysis efficiency can be improved by its supplementation with commercial beta-glucosidase.
Resumo:
The aim of this study was to evaluate the physical, chemical, and functional properties of recovered proteins of anchovy (Engraulis anchoita) and whitemouth croaker (Micropogonias furnieri) through the process of alkaline solubilisation and isoelectric precipitation, using different solubilisation (NaOH and KOH) and precipitation (HCl and H3PO4) reagents. The tests showed high protein level, and the lowest lipid reduction (94.5%) was found in the recovered protein of anchovy, the lowest yield of the process was 76.1%. The highest whiteness (78.8 and 74.2) was found in whitemouth croaker proteins. The solubilisation of the recovered protein was studied in the pH range (3, 5, 7, 9, and 11). The maximum solubility was at pHs 3 and 11 and minimum solubility was at pH 5 in the species under study.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The cis to trans isomerizations during the syntheses of trans-[Ru(NO)(OH)(cyclam)](PF6)(2), from cis-[RuCl2 (cyclam)]Cl, and [Ru(NO)Cl(cyclam)] (PF6)(2), from cis-[RuCl2(dmso)(4)], are reported. The novel trans-[Ru(NO) (OH)(cyclam)](PF6)(2) complex was characterized by X-ray crystallography and vibrational infrared and nuclear magnetic resonance spectroscopies. The Ru-N-O bond angle (176.75 degrees) and v( NO) (1835 cm(-1)) suggest a nitrosonium character for this hydroxo complex. The crystal and molecular structure of trans-[Ru(NO)Cl(cyclam)] (ClO4)(2)center dot 2 H2O is also reported. Results presented here support the cis-trans isomerization observed for the first time with ruthenium cyclam complexes. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Unusual high photoassisted quantum yields for cis-to-trans (phi(254) (nm) = 0.27 +/- 0.05) isomerization of CNstpy coordinated to fac-[Re(CO)(3)(phen)(CNstpy)](+) were determined along with trans-to-cis ones (phi(313) (nm)= 0.58 +/- 0.02; phi(365) (nm)= 0.61 +/- 0.06; phi(404) (nm) = 0.42 +/- 0.02). Additionally, in contrast to other similar rhenium(I) complexes, the cis photoproduct is quasi non-emissive and comparable to the trans-complex. The cis-to-trans photoisomerization is due to the deactivation from the ILcis-CNstpy excited state in competition to the usual (MLCTRe -> phen)-M-3 luminescence. These efficient cis to trans and trans to cis photoisomerization can be conveniently used in light powered molecular machines. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
A highly concentrated aqueous saline-containing solution of phenol, 2,4-dichlorophenoxyacetic acid (2,4-D) and 2,4-dichlorophenol (2.4-DCP) was treated by the photo-Fenton process in a system composed of an annular reactor with a quartz immersion well and a medium-pressure mercury lamp (450 W). The study was conducted under special conditions to minimize the costs of acidification and neutralization, which are usual steps in this type of process. Photochemical reactions were carried out to investigate the influence of some process variables such as the initial concentration of Fe2+ ([Fe2+](0)) from 1.0 up to 2.5 mM, the rate in mmol of H2O2 fed into the system (F-H2O2,F-in) from 3.67 up to 7.33 mmol of H2O2/min during 120 min of reaction time, and the initial pH (pH(0)) from 3.0 up to 9.0 in the presence and absence of NaCl (60.0 g/L). Although the optimum pH for the photo-Fenton process is about 3.0, this particular system performed well in experimental conditions starting at alkaline and neutral pH. The results obtained here are promising for industrial applications, particularly in view of the high concentration of chloride, a known hydroxyl radical scavenger and the main oxidant present in photo-Fenton processes. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
The Ipanema alkaline-carbonatitic complex is part of the Meso-Cenozoic alkaline magmatism located within the southeastern part of the Brazilian Platform. Drill-core and field sampling have indicated the occurrence of glimmerites, with subordinate shonkinites (mela-syenites), clinopyroxene-bearing glimmerites, diorites and syenites. The glimmerites are cross-cut by lamprophyric dykes and calciocarbonatites. Fenitization has deeply affected the country rocks, originating dioritic and syenitic rocks. The Ipanema rocks show a distinct potassic affinity. The initial Sr-Nd- isotopic composition of the Ipanema rocks ((87)Sr/(86)Sr = 0.70661-0.70754 and (143)Nd/(144)Nd = 0.51169-0.51181) is similar to that of tholeiitic and potassium-rich-alkaline rocks of the Eastern Paraguay. Stable isotope data for the Ipanema calciocarbonatite suggest interaction with fluids at temperatures typical of hydrothermal stages, as hypothesized for other carbonatite complexes from southeastern Brazil. The chemical differences between the lamprophyre, glimmerites, carbonatites, apatitites and magnetitites, and the absence of marked REE enrichment in the evolved lithologies, all indicate that fractional crystallization and accumulus of liquidus phases in a magma reservoir, likely coupled with liquid immiscibility processes, may have played an important role in the genesis of the Ipanema rocks.
Resumo:
The electro-oxidation of ethanol was investigated on electrodeposited layers of Pd, Pt, and Rh in alkaline electrolyte. The reaction products were monitored by experiments of online differential electrochemical mass spectrometry (DEMS). Potentiodynamic curves for the ethanol electro-oxidation catalyzed by these three different metal electrocatalysts showed similar onset potentials, but the highest Faradaic current peak was observed for the Pt electrocatalyst. Online DEMS experiments evidenced similar amounts of CO2 for the three different materials, but Pd presented the higher production of ethylacetate (acetic acid). This indicated that the electrochemical oxidation of ethanol on the Pd surface occurred to a higher extent. The formation of methane, which was observed for Pt and Rh, after potential excursions to lower potentials, was absent for Pd. On the basis of the obtained results, it was stated that, on Pt and Rh, the formation of CO2 occurs mainly via oxidation of CO and CH (x,ad) species formed after dissociative adsorption of ethanol or ethoxy species that takes place only at low potentials. This indicates that the dissociative adsorption of ethanol or ethoxy species is inhibited at higher potentials on Pt and Rh. On the other hand, on the Pd electrocatalyst, the reaction may occur via nondissociative adsorption of ethanol or ethoxy species at lower potentials, followed by oxidation to acetaldehyde and, after that, by a further oxidation step to acetic acid on the electrocatalyst surface. Additionally, in a parallel route, the acetaldehyde molecules adsorbed on the Pd surface can be deprotonated, yielding a reaction intermediate in which the carbon-carbon bond is less protected, and therefore, it can be dissociated on the Pd surface, producing CO2, after potential excursions to higher potentials.
Resumo:
Lignin is a macromolecule frequently obtained as residue during technological processing of biomass. Modifications in chemical structure of lignin generate valuable products, some with particular and unique characteristics. One of the available methods for modification of industrial lignin is oxidation by hydrogen peroxide. In this work, we conducted systematic studies of the oxidation process that were carried out at various pHs and oxidizing agent concentrations. Biophysical, biochemical, structural properties of the oxidized lignin were analyzed by UV spectrophotometry, Fourier transform infrared spectroscopy, scanning electron microscopy and small angle X-ray scattering. Our results reveal that lignin oxidized with 9.1% H(2)O(2) (m/v) at pH 13.3 has the highest fragmentation, oxidation degree and stability. Although this processing condition might be considered quite severe, we have concluded that the stability of the obtained oxidized lignin was greatly increased. Therefore, the identified processing conditions of oxidation may be of practical interest for industrial applications. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
This work was focused on the steam explosion pretreatment reproduction and alkaline delignification reactions on a pilot scale for the ethanol production, through different varieties of natural sugarcane bagasse, pretreated bagasse and delignified pretreated bagasse (cellulosic pulp). The possible chemical composition differences of the various types of bagasse, as well as the chemical composition variations of the materials in the 20 processes of pretreatment and delignification on the pilot scale were verified. The analytical results of the 20 samples of most diverse varieties and origins of natural sugarcane bagasse considering planting soils, planting periods and weather; show no significant chemical differences. It is evident that only with the chemical composition it is not possible to verify the differences between the varieties of sugarcane bagasses. The research results may offer some evidences of these varieties, but it is not a reliable parameter. The pilot process of steam explosion pretreatment and the alkaline delignification process of pretreated material showed through analytical results a good capacity of reproduction, as the standard differences were below 2.7. The average allowed in the pretreatment and alkaline delignification processes were 66.1 +/- 0.8 and 51.5 +/- 2.6 respectively, ensuring an excellent reproduction capacity of the processes obtained through chemical characterizations. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Objective: The aim of this study was to investigate the effects of PRP on SAOS-2 cells in terms of cytokine expression, cell activity and oxidative stress. Design: Cell line SAOS-2 (1 x 10(5) cells/mL) were grown in culture medium alpha-MEM with 10% FBS for 24 h and stimulated (or not) with PRP at concentrations of 3, 10 and 20%, LPS (E. coli, 10 g/mL) and IL-1 beta (1 mg/mL) for 24 h. The supernatant was collected and analyzed for the expression of cytokines in a panel array, ALP using a commercial kit and NO2- with Griess reaction method. Also, the cells were analyzed using Western blot for RANKL and slot blotting for nitrotyrosine expression. Result: There were no significant differences amongst the groups in terms of NO2-, protein nitrotyrosine content and RANKL expression. However, all stimuli increased ALP activity and in case of PRP, it was in a dose-dependent manner (p < 0.001). Also, all stimuli induced an increase in cytokines and chemokines expression, but only PRP promoted an increase of component C5, sICAM-1 and RANTES expression. Whilst IL-1 receptor antagonist (IL-1ra) expression was down-regulated by PRP, both LPS and IL-1 beta caused up-regulation of this cytokine. Conclusions: PRP can stimulate osteoblast activity and cytokine/chemokine release, as well as indicate some of the mediators that can (and cannot) be involved in this activation. (C) 2012 Elsevier Ltd. All rights reserved.