370 resultados para trains


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A pressure wave is generated when a high speed train enters a tunnel. This wave travels along the tunnel back and forth, and is reflected at the irregularities of the tunnel duct (section changes, chimneys and tunnel ends). The pressure changes are associated to these waves can have an effect on passengers if the trains are not suitably sealed or pressurized. The intensity of the waves depends mainly on the train speed, and on the blockage ratio (train-section-to- tunnel-section area ratio). As the intensity of the waves is limited by regulations, and also by the effects on passengers and infrastructures, the sizing of the tunnel section area is largely influenced by the maximum train speed allowed in the tunnel. The aim of this study is to analyse the increase in cost in a tunnel due to the existence of this difference in ground level, and evaluate the increase of construction costs that this elevation might involve.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The study of lateral dynamics of running trains on bridges is of importance mainly for the safety of the traffic, and may be relevant for laterally compliant bridges. These studies require 3D coupled vehicle-bridge models, and consideration of wheel to rail contact, a phenomenon which is complex and costly to model in detail. We describe here a fully nonlinear coupled model, described in absolute coordinates and incorporated into a commercial finite element framework. Two applications are presented, firstly to a vehicle subject to a strong wind gust traversing a br idge, showing the relevance of the nonlinear wheel-rail contact model as well as the interaction between bridge and vehicle. The second application is to a real viaduct in a high-speed line, with a long continuous deck and tall piers with high lateral compliance. The results show the safety of the traffic as well as the relevance of considering the wind action and the nonlinear response.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The dynamic effects of high-speed trains on viaducts are important issues for the design of the structures, as well as for determining safe running conditions of trains. In this work we start by reviewing the relevance of some basic moving load models for the dynamic action of vertical traffic loads. The study of lateral dynamics of running trains on bridges is of importance mainly for the safety of the traffic, and may be relevant for laterally compliant bridges. These studies require 3D coupled vehicle-bridge models and consideration of wheel to rail contact. We describe here a fully nonlinear coupled model, formulated in absolute coordinates and incorporated into a commercial finite element framework. An application example is presented for a vehicle subject to a strong wind gust traversing a bridge, showing the relevance of the nonlinear wheel-rail contact model as well as the interaction between bridge and vehicle.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Digital chaotic behavior in an optically processing element is reported. It is obtained as the result of processing two fixed trains of bits. The process is performed with an optically programmable logic gate, previously reported as a possible main block for optical computing. Outputs for some specific conditions of the circuit are given. Digital chaos is obtained using a feedback configuration. Period doublings in a Feigenbaum‐like scenario are obtained. A new method to characterize this type of digital chaos is reported.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents the results of part of the research carried out by a committee in charge of the elaboration of the new Spanish Code of Actions in Railway Bridges. Following the work developed by the European Rail Research Institute (ERRI), the dynamic effects caused by the Spanish high-speed train TALGO have been studied and compared with other European trains. A simplified envelope of the impact coefficient is also presented. Finally, the train-bridge interactions has been analysed and the results compared with those obtained from simple models based on moving loads.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Digital chaotic behaviour in an Optical-Processing Element is reported. It is obtained as the result of processing two fixed trains of bits. Period doublings in a Feigenbaum-like scenario have been obtained. A new method to characterize digital chaos is reported

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Digital chaotic behavior in an optically processing element is analyzed. It was obtained as the result of processing two fixed trains of bits. The process is performed with an optically programmable logic gate. Possible outputs, for some specific conditions of the circuit, are given. Digital chaotic behavior is obtained, by using a feedback configuration. Different ways to analyze a digital chaotic signal are presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper focuses on the railway rolling stock circulation problem in rapid transit networks where the known demand and train schedule must be met by a given fleet. In rapid transit networks the frequencies are high and distances are relatively short. Although the distances are not very large, service times are high due to the large number of intermediate stops required to allow proper passenger flow. The previous circumstances and the reduced capacity of the depot stations and that the rolling stock is shared between the different lines, force the introduction of empty trains and a careful control on shunting operation. In practice the future demand is generally unknown and the decisions must be based on uncertain forecast. We have developed a stochastic rolling stock formulation of the problem. The computational experiments were developed using a commercial line of the Madrid suburban rail network operated by RENFE (The main Spanish operator of suburban trains of passengers). Comparing the results obtained by deterministic scenarios and stochastic approach some useful conclusions may be obtained.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Implantación de la Red de Alta velocidad Ferroviaria en California. Tramo Fresno-Sacramento. El presente articúlo es la cuarta parte de la serie "Alta Velocidad Ferroviaria en California (CHSRS)". Recoge la Alternativa "Stockton Arch", que el Proyecto FARWEST presenta a la prevista por la Authority (CHSRA), para la Línea HSR Fresno-Sacramento, en programación y en trazado. Éste discurre, desde la gran Terminal de Fresno (implantada en las afueras al suroeste de la ciudad) por el segmento sur del "mar interior" (que en el Terciario Superior ocupaba el actual Valle Central), hasta Stockton, y por el segmento norte, hasta Sacramento. El Paet de Ripperdan (~ pK 40) queda conectado por carretera con el PAET de Oroloma de la Línea HSR Fresno-San Francisco (Golden Gate Alternative). La última parte del trazado de la Línea HSR Fresno-Sacramento (Stockton Arch Alternative), coincide en alineación y rasante con la Línea HSR San Francisco-Sacramento (Crossing Bay Alternative) a la altura de Roseville, donde se emplaza la gran terminal norte de la red de California, desde la que se unirá ésta con la de Nevada, por Reno. This article forras the fourth part of the series entitled "High Speed Railway in California (CHSRS)". It addresses the "Stockton Arch" alternative, which the FARWESTProjectpresents in scheduling and in alignment as to that provided for by the Authority (CHSRA) for the Fresno-Sacramento HSR Line. The latter runs from the grand Fresno Terminal (located in the outskirts to the southwest ofthe city) through the south segment ofthe "inland sea" (which oceupied the current Central Valley in the Upper Tertiary) to Stockton and through the north segment to Sacramento. The Ripperdan TSAP (post ofpassing and stabling trains), — kilometer point 40, conneets with the Oroloma TSAP ofthe Fresno-San Francisco HSR Line (Golden Gate Alternative) by road. The last part of the Fresno-Sacramento HSR Line alignment (Stockton Arch Alternative), coincides in alignment and grade with the San Francisco-Sacramento HSR Line (Crossing Bay Alternative) at Roseville, where the great north terminal ofthe California network is located, from which the latter will be linked with Nevada s network through Reno.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The main objective of this paper is to present some tools to analyze a digital chaotic signal. We have proposed some of them previously, as a new type of phase diagrams with binary signals converted to hexadecimal. Moreover, the main emphasis will be given in this paper to an analysis of the chaotic signal based on the Lempel and Ziv method. This technique has been employed partly by us to a very short stream of data. In this paper we will extend this method to long trains of data (larger than 2000 bit units). The main characteristics of the chaotic signal are obtained with this method being possible to present numerical values to indicate the properties of the chaos.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Atrial fibrillation (AF) is a common heart disorder. One of the most prominent hypothesis about its initiation and maintenance considers multiple uncoordinated activation foci inside the atrium. However, the implicit assumption behind all the signal processing techniques used for AF, such as dominant frequency and organization analysis, is the existence of a single regular component in the observed signals. In this paper we take into account the existence of multiple foci, performing a spectral analysis to detect their number and frequencies. In order to obtain a cleaner signal on which the spectral analysis can be performed, we introduce sparsity-aware learning techniques to infer the spike trains corresponding to the activations. The good performance of the proposed algorithm is demonstrated both on synthetic and real data. RESUMEN. Algoritmo basado en técnicas de regresión dispersa para la extracción de las señales cardiacas en pacientes con fibrilación atrial (AF).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La influencia de la aerodinámica en el diseño de los trenes de alta velocidad, unida a la necesidad de resolver nuevos problemas surgidos con el aumento de la velocidad de circulación y la reducción de peso del vehículo, hace evidente el interés de plantear un estudio de optimización que aborde tales puntos. En este contexto, se presenta en esta tesis la optimización aerodinámica del testero de un tren de alta velocidad, llevada a cabo mediante el uso de métodos de optimización avanzados. Entre estos métodos, se ha elegido aquí a los algoritmos genéticos y al método adjunto como las herramientas para llevar a cabo dicha optimización. La base conceptual, las características y la implementación de los mismos se detalla a lo largo de la tesis, permitiendo entender los motivos de su elección, y las consecuencias, en términos de ventajas y desventajas que cada uno de ellos implican. El uso de los algorimos genéticos implica a su vez la necesidad de una parametrización geométrica de los candidatos a óptimo y la generación de un modelo aproximado que complementa al método de optimización. Estos puntos se describen de modo particular en el primer bloque de la tesis, enfocada a la metodología seguida en este estudio. El segundo bloque se centra en la aplicación de los métodos a fin de optimizar el comportamiento aerodinámico del tren en distintos escenarios. Estos escenarios engloban los casos más comunes y también algunos de los más exigentes a los que hace frente un tren de alta velocidad: circulación en campo abierto con viento frontal o viento lateral, y entrada en túnel. Considerando el caso de viento frontal en campo abierto, los dos métodos han sido aplicados, permitiendo una comparación de las diferentes metodologías, así como el coste computacional asociado a cada uno, y la minimización de la resistencia aerodinámica conseguida en esa optimización. La posibilidad de evitar parametrizar la geometría y, por tanto, reducir el coste computacional del proceso de optimización es la característica más significativa de los métodos adjuntos, mientras que en el caso de los algoritmos genéticos se destaca la simplicidad y capacidad de encontrar un óptimo global en un espacio de diseño multi-modal o de resolver problemas multi-objetivo. El caso de viento lateral en campo abierto considera nuevamente los dos métoxi dos de optimización anteriores. La parametrización se ha simplificado en este estudio, lo que notablemente reduce el coste numérico de todo el estudio de optimización, a la vez que aún recoge las características geométricas más relevantes en un tren de alta velocidad. Este análisis ha permitido identificar y cuantificar la influencia de cada uno de los parámetros geométricos incluídos en la parametrización, y se ha observado que el diseño de la arista superior a barlovento es fundamental, siendo su influencia mayor que la longitud del testero o que la sección frontal del mismo. Finalmente, se ha considerado un escenario más a fin de validar estos métodos y su capacidad de encontrar un óptimo global. La entrada de un tren de alta velocidad en un túnel es uno de los casos más exigentes para un tren por el pico de sobrepresión generado, el cual afecta a la confortabilidad del pasajero, así como a la estabilidad del vehículo y al entorno próximo a la salida del túnel. Además de este problema, otro objetivo a minimizar es la resistencia aerodinámica, notablemente superior al caso de campo abierto. Este problema se resuelve usando algoritmos genéticos. Dicho método permite obtener un frente de Pareto donde se incluyen el conjunto de óptimos que minimizan ambos objetivos. ABSTRACT Aerodynamic design of trains influences several aspects of high-speed trains performance in a very significant level. In this situation, considering also that new aerodynamic problems have arisen due to the increase of the cruise speed and lightness of the vehicle, it is evident the necessity of proposing an optimization study concerning the train aerodynamics. Thus, the aerodynamic optimization of the nose shape of a high-speed train is presented in this thesis. This optimization is based on advanced optimization methods. Among these methods, genetic algorithms and the adjoint method have been selected. A theoretical description of their bases, the characteristics and the implementation of each method is detailed in this thesis. This introduction permits understanding the causes of their selection, and the advantages and drawbacks of their application. The genetic algorithms requirethe geometrical parameterization of any optimal candidate and the generation of a metamodel or surrogate model that complete the optimization process. These points are addressed with a special attention in the first block of the thesis, focused on the methodology considered in this study. The second block is referred to the use of these methods with the purpose of optimizing the aerodynamic performance of a high-speed train in several scenarios. These scenarios englobe the most representative operating conditions of high-speed trains, and also some of the most exigent train aerodynamic problems: front wind and cross-wind situations in open air, and the entrance of a high-speed train in a tunnel. The genetic algorithms and the adjoint method have been applied in the minimization of the aerodynamic drag on the train with front wind in open air. The comparison of these methods allows to evaluate the methdology and computational cost of each one, as well as the resulting minimization of the aerodynamic drag. Simplicity and robustness, the straightforward realization of a multi-objective optimization, and the capability of searching a global optimum are the main attributes of genetic algorithm. However, the requirement of geometrically parameterize any optimal candidate is a significant drawback that is avoided with the use of the adjoint method. This independence of the number of design variables leads to a relevant reduction of the pre-processing and computational cost. Considering the cross-wind stability, both methods are used again for the minimization of the side force. In this case, a simplification of the geometric parameterization of the train nose is adopted, what dramatically reduces the computational cost of the optimization process. Nevertheless, some of the most important geometrical characteristics are still described with this simplified parameterization. This analysis identifies and quantifies the influence of each design variable on the side force on the train. It is observed that the A-pillar roundness is the most demanding design parameter, with a more important effect than the nose length or the train cross-section area. Finally, a third scenario is considered for the validation of these methods in the aerodynamic optimization of a high-speed train. The entrance of a train in a tunnel is one of the most exigent train aerodynamic problems. The aerodynamic consequences of high-speed trains running in a tunnel are basically resumed in two correlated phenomena, the generation of pressure waves and an increase in aerodynamic drag. This multi-objective optimization problem is solved with genetic algorithms. The result is a Pareto front where a set of optimal solutions that minimize both objectives.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In a crosswind scenario, the risk of high-speed trains overturning increases when they run on viaducts since the aerodynamic loads are higher than on the ground. In order to increase safety, vehicles are sheltered by fences that are installed on the viaduct to reduce the loads experienced by the train. Windbreaks can be designed to have different heights, and with or without eaves on the top. In this paper, a parametric study with a total of 12 fence designs was carried out using a two-dimensional model of a train standing on a viaduct. To asses the relative effectiveness of sheltering devices, tests were done in a wind tunnel with a scaled model at a Reynolds number of 1 × 105, and the train’s aerodynamic coefficients were measured. Experimental results were compared with those predicted by Unsteady Reynolds-averaged Navier-Stokes (URANS) simulations of flow, showing that a computational model is able to satisfactorily predict the trend of the aerodynamic coefficients. In a second set of tests, the Reynolds number was increased to 12 × 106 (at a free flow air velocity of 30 m/s) in order to simulate strong wind conditions. The aerodynamic coefficients showed a similar trend for both Reynolds numbers; however, their numerical value changed enough to indicate that simulations at the lower Reynolds number do not provide all required information. Furthermore, the variation of coefficients in the simulations allowed an explanation of how fences modified the flow around the vehicle to be proposed. This made it clear why increasing fence height reduced all the coefficients but adding an eave had an effect mainly on the lift force coefficient. Finally, by analysing the time signals it was possible to clarify the influence of the Reynolds number on the peak-to-peak amplitude, the time period and the Strouhal number.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the context of the present conference paper culverts are defined as an opening or conduit passing through an embankment usually for the purpose of conveying water or providing safe pedestrian and animal crossings under rail infrastructure. The clear opening of culverts may reach values of up to 12m however, values around 3m are encountered much more frequently. Depending on the topography, the number of culverts is about 10 times that of bridges. In spite of this, their dynamic behavior has received far less attention than that of bridges. The fundamental frequency of culverts is considerably higher than that of bridges even in the case of short span bridges. As the operational speed of modern high-speed passenger rail systems rises, higher frequencies are excited and thus more energy is encountered in frequency bands where the fundamental frequency of box culverts is located. Many research efforts have been spent on the subject of ballast instability due to bridge resonance, since it was first observed when high-speed trains were introduced to the Paris/Lyon rail line. To prevent this phenomenon from occurring, design codes establish a limit value for the vertical deck acceleration. Obviously one needs some sort of numerical model in order to estimate this acceleration level and at that point things get quite complicated. Not only acceleration but also displacement values are of interest e.g. to estimate the impact factor. According to design manuals the structural design should consider the depth of cover, trench width and condition, bedding type, backfill material, and compaction. The same applies to the numerical model however, the question is: What type of model is appropriate for this job? A 3D model including the embankment and an important part of the soil underneath the culvert is computationally very expensive and hard to justify taking into account the associated costs. Consequently, there is a clear need for simplified models and design rules in order to achieve reasonable costs. This paper will describe the results obtained from a 2D finite element model which has been calibrated by means of a 3D model and experimental data obtained at culverts that belong to the high-speed railway line that links the two towns of Segovia and Valladolid in Spain

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In recent years a great number of high speed railway bridges have been constructed within the Spanish borders. Due to the demanding high speed trains route's geometrical requirements, bridges frequently show remarkable lengths. This fact is the main reason why railway bridges are overall longer than roadway bridges. In the same line, it is also worth highlighting the importance of high speed trains braking forces compared to vehicles. While vehicles braking forces can be tackled easily, the railway braking forces demand the existence of a fixed-point. It is generally located at abutments where the no-displacements requirement can be more easily achieved. In some other cases the fixed-point is placed in one of the interior columns. As a consequence of these bridges' length and the need of a fixed-point, temperature, creep and shrinkage strains lead to fairly significant deck displacements, which become greater with the distance to the fixed-point. These displacements need to be accommodated by the piers and bearings deformation. Regular elastomeric bearings are not able to allow such displacements and therefore are not suitable for this task. For this reason, the use of sliding PTFE POT bearings has been an extensive practice mainly because they permit sliding with low friction. This is not the only reason of the extensive use of these bearings to high-speed railways bridges. The value of the vertical loads at each bent is significantly higher than in roadway bridges. This is so mainly because the live loads due to trains traffic are much greater than vehicles. Thus, gravel rails foundation represents a non-negligible permanent load at all. All this together increases the value of vertical loads to be withstood. This high vertical load demand discards the use of conventional bearings for excessive compressions. The PTFE POT bearings' higher technology allows to accommodate this level of compression thanks to their design. The previously explained high-speed railway bridge configuration leads to a key fact regarding longitudinal horizontal loads (such as breaking forces) which is the transmission of these loads entirely to the fixed-point alone. Piers do not receive these longitudinal horizontal loads since PTFE POT bearings displayed are longitudinally free-sliding. This means that longitudinal horizontal actions on top of piers will not be forces but imposed displacements. This feature leads to the need to approach these piers design in a different manner that when piers are elastically linked to superstructure, which is the case of elastomeric bearings. In response to the previous, the main goal of this Thesis is to present a Design Method for columns displaying either longitudinally fixed POT bearings or longitudinally free PTFE POT bearings within bridges with fixed-point deck configuration, applicable to railway and road vehicles bridges. The method was developed with the intention to account for all major parameters that play a role in these columns behavior. The long process that has finally led to the method's formulation is rooted in the understanding of these column's behavior. All the assumptions made to elaborate the formulations contained in this method have been made in benefit of conservatives results. The singularity of the analysis of columns with this configuration is due to a combination of different aspects. One of the first steps of this work was to study they of these design aspects and understand the role each plays in the column's response. Among these aspects, special attention was dedicated to the column's own creep due to permanent actions such us rheological deck displacements, and also to the longitudinally guided PTFE POT bearings implications in the design of the column. The result of this study is the Design Method presented in this Thesis, that allows to work out a compliant vertical reinforcement distribution along the column. The design of horizontal reinforcement due to shear forces is not addressed in this Thesis. The method's formulations are meant to be applicable to the greatest number of cases, leaving to the engineer judgement many of the different parameters values. In this regard, this method is a helpful tool for a wide range of cases. The widespread use of European standards in the more recent years, in particular the so-called Eurocodes, has been one of the reasons why this Thesis has been developed in accordance with Eurocodes. Same trend has been followed for the bearings design implications, which are covered by the rather recent European code EN-1337. One of the most relevant aspects that this work has taken from the Eurocodes is the non-linear calculations security format. The biaxial bending simplified approach that shows the Design Method presented in this work also lies on Eurocodes recommendations. The columns under analysis are governed by a set of dimensionless parameters that are presented in this work. The identification of these parameters is a helpful for design purposes for two columns with identical dimensionless parameters may be designed together. The first group of these parameters have to do with the cross-sectional behavior, represented in the bending-curvature diagrams. A second group of parameters define the columns response. Thanks to this identification of the governing dimensionless parameters, it has been possible what has been named as Dimensionless Design Curves, which basically allows to obtain in a reduced time a preliminary vertical reinforcement column distribution. These curves are of little use nowadays, firstly because each family of curves refer to specific values of many different parameters and secondly because the use of computers allows for extremely quick and accurate calculations.