905 resultados para task model
Resumo:
Calibration of stochastic traffic microsimulation models is a challenging task. This paper proposes a fast iterative probabilistic precalibration framework and demonstrates how it can be successfully applied to a real-world traffic simulation model of a section of the M40 motorway and its surrounding area in the U.K. The efficiency of the method stems from the use of emulators of the stochastic microsimulator, which provides fast surrogates of the traffic model. The use of emulators minimizes the number of microsimulator runs required, and the emulators' probabilistic construction allows for the consideration of the extra uncertainty introduced by the approximation. It is shown that automatic precalibration of this real-world microsimulator, using turn-count observational data, is possible, considering all parameters at once, and that this precalibrated microsimulator improves on the fit to observations compared with the traditional expertly tuned microsimulation. © 2000-2011 IEEE.
Resumo:
The visual system pools information from local samples to calculate textural properties. We used a novel stimulus to investigate how signals are combined to improve estimates of global orientation. Stimuli were 29 × 29 element arrays of 4 c/deg log Gabors, spaced 1° apart. A proportion of these elements had a coherent orientation (horizontal/vertical) with the remainder assigned random orientations. The observer's task was to identify the global orientation. The spatial configuration of the signal was modulated by a checkerboard pattern of square checks containing potential signal elements. The other locations contained either randomly oriented elements (''noise check'') or were blank (''blank check''). The distribution of signal elements was manipulated by varying the size and location of the checks within a fixed-diameter stimulus. An ideal detector would only pool responses from potential signal elements. Humans did this for medium check sizes and for large check sizes when a signal was presented in the fovea. For small check sizes, however, the pooling occurred indiscriminately over relevant and irrelevant locations. For these check sizes, thresholds for the noise check and blank check conditions were similar, suggesting that the limiting noise is not induced by the response to the noise elements. The results are described by a model that filters the stimulus at the potential target orientations and then combines the signals over space in two stages. The first is a mandatory integration of local signals over a fixed area, limited by internal noise at each location. The second is a taskdependent combination of the outputs from the first stage. © 2014 ARVO.
Resumo:
The basic methods of decisions making in multi-criterion conditions are considered, from which the method of the weighed total for calculation of diagnostic indexes significance in differential diagnostics of dermatological diseases is chosen.
Resumo:
The basic matrixes method is suggested for the Leontief model analysis (LM) with some of its components indistinctly given. LM can be construed as a forecast task of product’s expenses-output on the basis of the known statistic information at indistinctly given several elements’ meanings of technological matrix, restriction vector and variables’ limits. Elements of technological matrix, right parts of restriction vector LM can occur as functions of some arguments. In this case the task’s dynamic analog occurs. LM essential complication lies in inclusion of variables restriction and criterion function in it.
Resumo:
The operating model of knowledge quantum engineering for identification and prognostic decision- making in conditions of α-indeterminacy is suggested in the article. The synthesized operating model solves three basic tasks: Аt-task to formalize tk-knowledge; Вt-task to recognize (identify) objects according to observed results; Сt-task to extrapolate (prognosticate) the observed results. Operating derivation of identification and prognostic decisions using authentic different-level algorithmic knowledge quantum (using tRAKZ-method) assumes synthesis of authentic knowledge quantum database (BtkZ) using induction operator as a system of implicative laws, and then using deduction operator according to the observed tk-knowledge and BtkZ a derivation of identification or prognostic decisions in a form of new tk-knowledge.
Resumo:
* This publication is partially supported by the Bulgarian Ministry of Education (contract БОЕ 4-02/2004)
Resumo:
The paper presents a short review of some systems for program transformations performed on the basis of the internal intermediate representations of these programs. Many systems try to support several languages of representation of the source texts of programs and solve the task of their translation into the internal representation. This task is still a challenge as it is effort-consuming. To reduce the effort, different systems of translator construction, ready compilers with ready grammars of outside designers are used. Though this approach saves the effort, it has its drawbacks and constraints. The paper presents the general idea of using the mapping approach to solve the task within the framework of program transformations and overcome the disadvantages of the existing systems. The paper demonstrates a fragment of the ontology model of high-level languages mappings onto the single representation and gives the example of how the description of (a fragment) a particular mapping is represented in accordance with the ontology model.
Resumo:
In recent years, there has been an increasing interest in learning a distributed representation of word sense. Traditional context clustering based models usually require careful tuning of model parameters, and typically perform worse on infrequent word senses. This paper presents a novel approach which addresses these limitations by first initializing the word sense embeddings through learning sentence-level embeddings from WordNet glosses using a convolutional neural networks. The initialized word sense embeddings are used by a context clustering based model to generate the distributed representations of word senses. Our learned representations outperform the publicly available embeddings on half of the metrics in the word similarity task, 6 out of 13 sub tasks in the analogical reasoning task, and gives the best overall accuracy in the word sense effect classification task, which shows the effectiveness of our proposed distributed distribution learning model.
Resumo:
How are the image statistics of global image contrast computed? We answered this by using a contrast-matching task for checkerboard configurations of ‘battenberg’ micro-patterns where the contrasts and spatial spreads of interdigitated pairs of micro-patterns were adjusted independently. Test stimuli were 20 × 20 arrays with various sized cluster widths, matched to standard patterns of uniform contrast. When one of the test patterns contained a pattern with much higher contrast than the other, that determined global pattern contrast, as in a max() operation. Crucially, however, the full matching functions had a curious intermediate region where low contrast additions for one pattern to intermediate contrasts of the other caused a paradoxical reduction in perceived global contrast. None of the following models predicted this: RMS, energy, linear sum, max, Legge and Foley. However, a gain control model incorporating wide-field integration and suppression of nonlinear contrast responses predicted the results with no free parameters. This model was derived from experiments on summation of contrast at threshold, and masking and summation effects in dipper functions. Those experiments were also inconsistent with the failed models above. Thus, we conclude that our contrast gain control model (Meese & Summers, 2007) describes a fundamental operation in human contrast vision.
Resumo:
In product reviews, it is observed that the distribution of polarity ratings over reviews written by different users or evaluated based on different products are often skewed in the real world. As such, incorporating user and product information would be helpful for the task of sentiment classification of reviews. However, existing approaches ignored the temporal nature of reviews posted by the same user or evaluated on the same product. We argue that the temporal relations of reviews might be potentially useful for learning user and product embedding and thus propose employing a sequence model to embed these temporal relations into user and product representations so as to improve the performance of document-level sentiment analysis. Specifically, we first learn a distributed representation of each review by a one-dimensional convolutional neural network. Then, taking these representations as pretrained vectors, we use a recurrent neural network with gated recurrent units to learn distributed representations of users and products. Finally, we feed the user, product and review representations into a machine learning classifier for sentiment classification. Our approach has been evaluated on three large-scale review datasets from the IMDB and Yelp. Experimental results show that: (1) sequence modeling for the purposes of distributed user and product representation learning can improve the performance of document-level sentiment classification; (2) the proposed approach achieves state-of-The-Art results on these benchmark datasets.
Resumo:
One in five adults 65 years and older has diabetes. Coping with diabetes is a lifelong task, and much of the responsibility for managing the disease falls upon the individual. Reports of non-adherence to recommended treatments are high. Understanding the additive impact of diabetes on quality of life issues is important. The purpose of this study was to investigate the quality of life and diabetes self-management behaviors in ethnically diverse older adults with type 2 diabetes. The SF-12v2 was used to measure physical and mental health quality of life. Scores were compared to general, age sub-groups, and diabetes-specific norms. The Transtheoretical Model (TTM) was applied to assess perceived versus actual behavior for three diabetes self-management tasks: dietary management, medication management, and blood glucose self-monitoring. Dietary intake and hemoglobin A1c values were measured as outcome variables. Utilizing a cross-sectional research design, participants were recruited from Elderly Nutrition Program congregate meal sites (n = 148, mean age 75). ^ Results showed that mean scores of the SF-12v2 were significantly lower in the study sample than the general norms for physical health (p < .001), mental health (p < .01), age sub-group norms (p < .05), and diabetes-specific norms for physical health (p < .001). A multiple regression analysis found that adherence to an exercise plan was significantly associated with better physical health (p < .001). Transtheoretical Model multiple regression analyses explained 68% of the variance for % Kcal from fat, 41% for fiber, 70% for % Kcal from carbohydrate, and 7% for hemoglobin A 1c values. Significant associations were found between TTM stage of change and dietary fiber intake (p < .01). Other significant associations related to diet included gender (p < .01), ethnicity (p < .05), employment (p < .05), type of insurance (p < .05), adherence to an exercise plan (p < .05), number of doctor visits/year ( p < .01), and physical health (p < .05). Significant associations were found between hemoglobin A1c values and age ( p < .05), being non-Hispanic Black (p < .01), income (p < .01), and eye problems (p < .05). ^ The study highlights the importance of the beneficial effects of exercise on quality of life issues. Furthermore, application of the Transtheoretical Model in conjunction with an assessment of dietary intake may be valuable in helping individuals make lifestyle changes. ^
Resumo:
We present our approach to real-time service-oriented scheduling problems with the objective of maximizing the total system utility. Different from the traditional utility accrual scheduling problems that each task is associated with only a single time utility function (TUF), we associate two different TUFs—a profit TUF and a penalty TUF—with each task, to model the real-time services that not only need to reward the early completions but also need to penalize the abortions or deadline misses. The scheduling heuristics we proposed in this paper judiciously accept, schedule, and abort real-time services when necessary to maximize the accrued utility. Our extensive experimental results show that our proposed algorithms can significantly outperform the traditional scheduling algorithms such as the Earliest Deadline First (EDF), the traditional utility accrual (UA) scheduling algorithms, and an earlier scheduling approach based on a similar model.
Resumo:
For years, researchers and human resources specialists have been searching for predictors of performance as well as for relevant performance dimensions (Barrick & Mount, 1991; Borman & Motowidlo, 1993; Campbell, 1990; Viswesvaran et al., 1996). In 1993, Borman and Motowidlo provided a framework by which traditional predictors such as cognitive ability and the Big Five personality factors predicted two different facets of performance: 1) task performance and 2) contextual performance. A meta-analysis was conducted to assess the validity of this model as well as that of other modified models. The relationships between predictors such as cognitive ability and personality variables and the two outcome variables were assessed. It was determined that even though the two facets of performance may be conceptually different, empirically they overlapped substantially (p= .75). Finally, results show that there is some evidence for cognitive ability as a predictor of both task and contextual performance and conscientiousness as a predictor of both task and contextual performance. The possible mediation of predictor-- criterion relationships was also assessed. The relationship between cognitive ability and contextual performance vanished when task performance was controlled.
Resumo:
Perception of simultaneity and temporal order is studied with simultaneity judgment (SJ) and temporal-order judgment (TOJ) tasks. In the former, observers report whether presentation of two stimuli was subjectively simultaneous; in the latter, they report which stimulus was subjectively presented first. SJ and TOJ tasks typically give discrepant results, which has prompted the view that performance is mediated by different processes in each task. We looked at these discrepancies from a model that yields psychometric functions whose parameters characterize the timing, decisional, and response processes involved in SJ and TOJ tasks. We analyzed 12 data sets from published studies in which both tasks had been used in within-subjects designs, all of which had reported differences in performance across tasks. Fitting the model jointly to data from both tasks, we tested the hypothesis that common timing processes sustain simultaneity and temporal order judgments, with differences in performance arising from task-dependent decisional and response processes. The results supported this hypothesis, also showing that model psychometric functions account for aspects of SJ and TOJ data that classical analyses overlook. Implications for research on perception of simultaneity and temporal order are discussed.
Resumo:
Mobile Cloud Computing promises to overcome the physical limitations of mobile devices by executing demanding mobile applications on cloud infrastructure. In practice, implementing this paradigm is difficult; network disconnection often occurs, bandwidth may be limited, and a large power draw is required from the battery, resulting in a poor user experience. This thesis presents a mobile cloud middleware solution, Context Aware Mobile Cloud Services (CAMCS), which provides cloudbased services to mobile devices, in a disconnected fashion. An integrated user experience is delivered by designing for anticipated network disconnection, and low data transfer requirements. CAMCS achieves this by means of the Cloud Personal Assistant (CPA); each user of CAMCS is assigned their own CPA, which can complete user-assigned tasks, received as descriptions from the mobile device, by using existing cloud services. Service execution is personalised to the user's situation with contextual data, and task execution results are stored with the CPA until the user can connect with his/her mobile device to obtain the results. Requirements for an integrated user experience are outlined, along with the design and implementation of CAMCS. The operation of CAMCS and CPAs with cloud-based services is presented, specifically in terms of service description, discovery, and task execution. The use of contextual awareness to personalise service discovery and service consumption to the user's situation is also presented. Resource management by CAMCS is also studied, and compared with existing solutions. Additional application models that can be provided by CAMCS are also presented. Evaluation is performed with CAMCS deployed on the Amazon EC2 cloud. The resource usage of the CAMCS Client, running on Android-based mobile devices, is also evaluated. A user study with volunteers using CAMCS on their own mobile devices is also presented. Results show that CAMCS meets the requirements outlined for an integrated user experience.