890 resultados para suckling mice


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background The two major incretin hormones, glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) are being actively explored as anti-diabetic agents because they lower blood glucose through multiple mechanisms. The rapid inactivation of GIP and GLP-1 by the ubiquitous enzyme, dipeptidyl peptidase IV (DPP IV) makes their biological actions short-lived, but stable agonists such as N-acetylated GIP (N-AcGIP) and exendin(1-39)amide have been advocated as stable and specific GIP and GLP-1 analogues.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study examines the actions of the novel enzyme- resistant, NH2- terminally modified GIP analog ( Hyp(3)) GIP and its fatty acid- derivatized analog ( Hyp(3)) GIPLys(16)PAL. Acute effects are compared with the established GIP receptor antagonist ( Pro(3)) GIP. All three peptides exhibited DPP IV resistance, and significantly inhibited GIP stimulated cAMP formation and insulin secretion in GIP receptor- transfected fibroblasts and in clonal pancreatic BRIN- BD11 cells, respectively. Likewise, in obese diabetic ob/ob mice, intraperitoneal administration of GIP analogs significantly inhibited the acute antihyperglycemic and insulinreleasing effects of native GIP. Administration of once daily injections of ( Hyp(3)) GIP or ( Hyp(3)) GIPLys(16)PAL for 14 days resulted in significantly lower plasma glucose levels ( P <0.05) after ( Hyp3) GIP on days 12 and 14 and enhanced glucose tolerance ( P <0.05) and insulin sensitivity ( P <0.05 to P <0.001) in both groups by day 14. Both ( Hyp(3)) GIP and ( Hyp(3)) GIPLys(16)PAL treatment also reduced pancreatic insulin ( P <0.05 to P <0.01) without affecting islet number. These data indicate that ( Hyp3) GIP and ( Hyp(3)) GIPLys(16)PAL function as GIP receptor antagonists with potential for ameliorating obesity- related diabetes. Acylation of ( Hyp(3)) GIP to extend bioactivity does not appear to be of any additional benefit.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Obestatin is a recently discovered peptide hormone that appears to be involved in reducing food intake, gut motility and body weight. Obestatin is a product of the preproghrelin gene and appears to oppose several physiological actions of ghrelin. This study investigated the acute effects of obestatin (1-23) and the truncated form, obestatin (11-23), on feeding activity, glucose homeostasis or insulin secretion. Mice received either intraperitoneal obestatin (1-23) or (11-23) (1 mu mol/kg) 4 h prior to an allowed 15 min period of feeding. Glucose excursions and insulin responses were lowered by 64-77% and 39-41%, respectively, compared with saline controls. However this was accompanied by 43% and 53% reductions in food intake, respectively. The effects of obestatin peptides were examined under either basal or glucose (18 mmol/kg) challenge conditions to establish whether effects were independent of changes in feeding. No alterations in plasma glucose or insulin responses were observed. In addition, obestatin peptides had no effect on insulin sensitivity as revealed by hypoglycaemic response when co-administered with insulin. Our observations support a role for obestatin in regulating metabolism through changes of appetite, but indicate no direct actions on glucose homeostasis or insulin secretion. (c) 2007 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Effects of chemical ablation of the GIP and GLP-1 receptors on metabolic aspects of obesity-diabetes were investigated using the stable receptor antagonists (Pro(3))GIP and exendin(9-39)amide. Ob/ob mice received a daily i.p. injection of saline vehicle, (Pro(3))GIP, exendin(9-39)amide or a combination of both peptides over a 14-day period. Non-fasting plasma glucose levels were significantly (p <0.05) lower in (Pro(3))GIP-treated mice compared to control mice after just 9 days of treatment. (Pro(3))GIP-treated mice also displayed significantly lower plasma glucose concentrations in response to feeding and intraperitoneal administration of either glucose or insulin (p <0.05 to p <0.001). The (Pro(3))GIP-treated group also exhibited significantly (p <0.05) reduced pancreatic insulin content. Acute administration of exendin(9-39) amide immediately prior to re-feeding completely annulled the beneficial effects of sub-chronic (Pro(3))GIP treatment, but non-fasting concentrations of active GLP-1 were unchanged. Combined sub-chronic administration of (Pro(3)GIP) with exendin(9-39)amide revealed no beneficial effects. Similarly, daily administration of exendin(9-39)amide alone had no significant effects on any of the metabolic parameters measured. These studies highlight an important role for GIP in obesity-related forms of diabetes, suggesting the possible involvement of GLP-1 in the beneficial actions of GIP receptor antagonism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glucose-dependent insulinotrophic polypepticle (GIP) and glucagon-like peptide-1 (GLP-1) are important enteroendocrine hormones that are rapidly degraded by an ubiquitous enzyme dipeptidyl peptidase IV to yield truncated metabolites GIP(3-42) and GLP-1 (9-36)amide. In this study, we investigated the effects of sub-chronic exposure to these major circulating forms of GIP and GLP-1 on blood glucose control and endocrine pancreatic function in obese diabetic (ob/ob) mice. A once daily injection of either peptide for 14 days had no effect on body weight, food intake or pancreatic insulin content or islet morphology. GLP-1(9-36)amide also had no effect on plasma glucose homeostasis or insulin secretion. Mice receiving GIP(3-42) exhibited small but significant improvements in non-fasting plasma glucose, glucose tolerance and glycaemic response to feeding. Accordingly, plasma insulin responses were unchanged suggesting that the observed enhancement of insulin sensitivity was responsible for the improvement in glycaemic control. These data indicate that sub-chronic exposure to GIP and GLP-1 metabolites does not result in physiological impairment of insulin secretion or blood glucose control. GIP(3-42) might exert an overall beneficial effect by improving insulin sensitivity through extrapancreatic action.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aims/hypothesis Ablation of gastric inhibitory polypeptide ( GIP) receptor action is reported to protect against obesity and associated metabolic abnormalities. The aim of this study was to use prediabetic ob/ob mice to examine whether 60 days of chemical GIP receptor ablation with (Pro(3)) GIP is able to counter the development of genetic obesity-related diabetes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aging is associated with an increased incidence of glucose intolerance and type 2 diabetes. Glucagon-like peptide-1 (GLP-1) is an important insulinotropic peptide secreted from the gastrointestinal tract in response to nutrient absorption. The present study was designed to assess the sub-chronic glucose regulatory effects of the potent long-acting GLP-1 receptor agonist, (Val(8))GLP-1, in aging 45-49 week old mice. Daily injection of (Val$)GLP-1 (25 nmol/kg body weight) for 12 days had no significant effect on food intake, body weight, non-fasting plasma glucose and insulin concentrations. However, after 12 days, the glycaemic response to intraperitoneal glucose was improved (P <0.05) in (Val(8))GLP-1 treated mice. In keeping with this, glucose-mediated insulin secretion was enhanced (P <0.05) and insulin sensitivity improved (P <0.05) compared to controls. These data indicate that sub-chronic activation of the GLP-1 receptor by daily treatment with (Val(8))GLP-1 counters aspects of the age-related impairment of pancreatic beta-cell function and insulin sensitivity. 2006 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

1. Free-living animals make complex decisions associated with optimizing energy and nutrient intake. In environments where ambient temperatures fall below the thermoneutral zone, homeotherms must choose whether or not to forage, how long and what to forage for, and whether or not to perform activities that conserve energy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Animals inhabiting environments with low productivity and food availability commonly have reduced energy demands and increased digestive efficiencies. The dry matter intake (DMI), apparent digestible dry matter (ADDM), digestible efficiency (DE) and digestible energy intake (DEI) of two populations of common spiny mouse Acomys cahirinus were compared during both winter and summer under conditions of simulated water stress. Mice were captured from the north- and south-facing slopes (NFS and SFS) of the same canyon that represent mesic and xeric habitats, respectively. Measured variables were also compared between F-1 mice that had been born to either NFS or SFS mice, and raised in the laboratory. SFS mice were able to assimilate energy more efficiently than NFS mice during the summer. By comparison, NFS mice were able to assimilate more energy during the winter. During winter, NFS mice assimilated more energy at low levels of water stress, whereas SFS mice assimilated more energy at higher levels. Differences were also apparent in F-1 mice. It is therefore suggested that local climatic conditions can impose physiological adaptations that are retained in succeeding generations, creating unique meta-populations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We compared non-shivering thermogenesis between two adjacent populations of freshly captured common spiny mice (Acomys cahirinus) during both winter and summer. Mice were captured from north- and south-facing slopes (NFS and SFS) of the same valley that represent 'Mediterranean' and 'Desert' habitats, respectively. Oxygen consumption and body temperature responses to an injection of exogenous noradrenaline (NA) were higher during the winter than during the summer. in addition, SFS mice had a lower body temperature response to NA during the summer than the other groups of mice. This suggests that heat dissipation is likely to have been greatest in SFS mice during the summer. Overall this study shows that seasonal acclimatization of NST mechanisms is an important trait for small mammals that inhabit the Mediterranean ecosystem. Differences in physiological capabilities can occur temporally within populations across seasons, and spatially between populations that are only a short distance (200-500 m) apart.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The osmoregulatory function of common spiny mice Acomys cahirinus living on opposite slopes of the lower Nahal Oren ('Evolution Canyon') on mount Carmel, Israel, was investigated by increasing the salinity of the water source whilst maintaining a high-protein diet. The southern-facing slope (SFS) of this canyon differs from the northern-facing slope (NFS) as it receives considerably more solar radiation and consequently forms a more xeric, sparsely vegetated habitat. During the summer, mice living on the two opposite slopes significantly differed in their urine osmolality, which also increased significantly as dietary salinity increased. Offspring of wild-captured mice, born in captivity, and examined during the winter, continued to show a difference in osmoregulatory function depending on the slope of origin. However, they differed from wild-captured mice, as they did not respond to the increase in dietary salinity by increasing the concentration of their urine, but rather by increasing the volume of urine produced. This study shows that A. cahirinus occupying different microhabitats may exhibit differences in their ability to concentrate urine and thus in their ability to withstand xeric conditions. We suggest that they may also differ genetically, as offspring from the NFS and SFS retain physiological differences, but further studies will be needed to confirm this hypothesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The common spiny mouse Acomys cahirinus, of Ethiopian origin, has a widespread distribution across arid, semi-arid and Mediterranean parts of the Arabian sub-region. We compared the daily energy expenditure (DEE), water turnover NTTO) and sustained metabolic scope (SusMS = DEE/resting metabolic rate) of two adjacent populations during the winter. Mice were captured from North- and South- facing slopes (NFS and SFS) of the same valley, comprising mesic and xeric habitats, respectively. Both DEE and SusMS winter values were greater in NFS than SFS mice and were significantly greater than values previously measured in the summer for these two populations in the same environments. However, WTO values were consistent with previously established values and were not significantly different from allometric predictions for desert eutherians. We suggest that physiological plasticity in energy expenditure, which exists both temporally and spatially, combined with stable WTO, perhaps reflecting a xeric ancestry, has enabled A. cahirinus to invade a wide range of habitats. (C) 2003 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

1. We compared resting metabolic rate (RMR) and non-shivering thermogenesis (NST) values between founder and F1-populations of winter-acclimatized Acomys cahirinus that originated from north- and south-facing slopes (NFS and SFS) of the same valley, representing mesic and xeric habitats. 2. NST was measured by the increase in oxygen consumption (VO2) and body temperature (T-b) after a noradrenaline (NA) injection (VO2 NA, TbNA). 3. Body mass and TbNA values were higher in SFS F1-mice, while RMR and VO2 NA values were higher in NFS F1-mice. Differences were not apparent in founders. 4. Results are consistent with NFS and SFS mice being considered as

Relevância:

20.00% 20.00%

Publicador:

Resumo:

1. A comparison was made of the daily energy expenditure (DEE), resting metabolic rate (RMR) and water turnover (WTO) of two populations of Common Spiny Mice Acomys cahirinus from north- and south-facing slopes (NFS and SFS) of the same valley, which represented 'Mediterranean' and 'desert' habitats, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We compared body temperature (T-b) daily rhythms in two populations of common spiny mice, Acomys cahirinus, during summer and winter months in relation to increasing dietary salt content. Mice were collected from the North and South facing slopes (NFS and SFS) of the same valley, that are exhibiting mesic and xeric habitats, respectively. During the summer, whilst mice were offered a water source containing 0.9% NaCl, SFS individuals had T-b peak values at 24:00, whereas NFS individuals had peak values at 18:00. When the salinity of the water source was increased, from 0.9 to 2.5% and then 3.5%, the difference between maximal and minimal T-b of both populations increased. In addition, with increased salinity, the T-b daily peak of SFS mice shifted to 18:00. During the winter, the mean daily T-b values of both populations of mice were lower than during the summer. At 0.9% salinity, the NFS mice exhibited a daily T-b variation with a peak at the beginning of the night. However, we did not detect any significant variation in daily T-b in the SFS mice. At 2.5% salinity, the difference between the mean daily T-b of mice from the two slopes increased. In winter we were unable to increase the salinity to 3.5% as the animals began to lose weight rapidly. We suggest that common spiny mice that inhabit these two micro-habitats axe forming two discrete populations that respond differently to the environmental pressures prevailing in each habitat, by evolving different physiological capacities. (C) 2002 Elsevier Science Inc. All rights reserved.