896 resultados para relational database
Resumo:
L'objectiu d'aquest treball és dissenyar una base de dades que permeti gestionar de formaeficient la disciplina d'un centre educatiu. La base de dades s'ha de poder ampliar a futures funcionalitats, aprofitant tota la informació que tindrà referent a alumnes, cursos, professors i d'altres.
Resumo:
El treball se centra en desenvolupar un sistema informàtic que serveixi com a magatzem d'informació per a una futura aplicació de gestió d'amonestacions i sancions en centres educatius d'ensenyament secundari dependents de la Generalitat de Catalunya i implica tant el disseny com la implementació de la base de dades. L'aplicació concreta de gestió, però, resta fora de l'àmbit d'aquest treball. El projecte permet, mitjançant procediments emmagatzemats, efectuar les funcionalitats principals del sistema: inserir, esborrar i/o modificar dades; a més, proporciona diversa informació estadística.
Resumo:
La Comunitat Europea ha encarregat el disseny i implementació d'una base de dades que ajudi a controlar el consum energètic i estudiar les seves característiques. Aquest TFC conté el desenvolupament d'aquest projecte començant des de zero i contempla totes les fases de creació de la base de dades a implementar en Oracle. Les fases del projecte són: anàlisi prèvia, anàlisi de requisits, disseny, implementació, proves i lliurament final.
Resumo:
Anàlisi, disseny i implementació d'una base de dades relacional i un magatzem de dades per a una empresa de selecció de personal.
Resumo:
L'objectiu d'aquest projecte és desenvolupar una aplicació per donar suport en les activitats de negoci d'una empresa de selecció de personal. Per fer-ho s'hauran de desenvolupar un sistema relacional i un magatzem de dades.
Resumo:
El treball proposat consisteix en implementar un sistema de base de dades per donar resposta a una necessitat de control energètic que s'ha plantejat a nivell europeu. Inclou fase de plantejament, disseny, implementació i proves.
Resumo:
Disseny d'un model de base de dades relacional, juntament amb els procediments i disparadors necessaris per controlar un sistema energètic.
Resumo:
Background The 'database search problem', that is, the strengthening of a case - in terms of probative value - against an individual who is found as a result of a database search, has been approached during the last two decades with substantial mathematical analyses, accompanied by lively debate and centrally opposing conclusions. This represents a challenging obstacle in teaching but also hinders a balanced and coherent discussion of the topic within the wider scientific and legal community. This paper revisits and tracks the associated mathematical analyses in terms of Bayesian networks. Their derivation and discussion for capturing probabilistic arguments that explain the database search problem are outlined in detail. The resulting Bayesian networks offer a distinct view on the main debated issues, along with further clarity. Methods As a general framework for representing and analyzing formal arguments in probabilistic reasoning about uncertain target propositions (that is, whether or not a given individual is the source of a crime stain), this paper relies on graphical probability models, in particular, Bayesian networks. This graphical probability modeling approach is used to capture, within a single model, a series of key variables, such as the number of individuals in a database, the size of the population of potential crime stain sources, and the rarity of the corresponding analytical characteristics in a relevant population. Results This paper demonstrates the feasibility of deriving Bayesian network structures for analyzing, representing, and tracking the database search problem. The output of the proposed models can be shown to agree with existing but exclusively formulaic approaches. Conclusions The proposed Bayesian networks allow one to capture and analyze the currently most well-supported but reputedly counter-intuitive and difficult solution to the database search problem in a way that goes beyond the traditional, purely formulaic expressions. The method's graphical environment, along with its computational and probabilistic architectures, represents a rich package that offers analysts and discussants with additional modes of interaction, concise representation, and coherent communication.
Resumo:
Teaching and research are organised differently between subject domains: attempts to construct typologies of higher education institutions, however, often do not include quantitative indicators concerning subject mix which would allow systematic comparisons of large numbers of higher education institutions among different countries, as the availability of data for such indicators is limited. In this paper, we present an exploratory approach for the construction of such indicators. The database constructed in the AQUAMETH project, which includes also data disaggregated at the disciplinary level, is explored with the aim of understanding patterns of subject mix. For six European countries, an exploratory and descriptive analysis of staff composition divided in four large domains (medical sciences, engineering and technology, natural sciences and social sciences and humanities) is performed, which leads to a classification distinguishing between specialist and generalist institutions. Among the latter, a further distinction is made based on the presence or absence of a medical department. Preliminary exploration of this classification and its comparison with other indicators show the influence of long term dynamics on the subject mix of individual higher education institutions, but also underline disciplinary differences, for example regarding student to staff ratios, as well as national patterns, for example regarding the number of PhD degrees per 100 undergraduate students. Despite its many limitations, this exploratory approach allows defining a classification of higher education institutions that accounts for a large share of differences between the analysed higher education institutions.
Resumo:
Our purpose is to provide a set-theoretical frame to clustering fuzzy relational data basically based on cardinality of the fuzzy subsets that represent objects and their complementaries, without applying any crisp property. From this perspective we define a family of fuzzy similarity indexes which includes a set of fuzzy indexes introduced by Tolias et al, and we analyze under which conditions it is defined a fuzzy proximity relation. Following an original idea due to S. Miyamoto we evaluate the similarity between objects and features by means the same mathematical procedure. Joining these concepts and methods we establish an algorithm to clustering fuzzy relational data. Finally, we present an example to make clear all the process
Resumo:
Access to online repositories for genomic and associated "-omics" datasets is now an essential part of everyday research activity. It is important therefore that the Tuberculosis community is aware of the databases and tools available to them online, as well as for the database hosts to know what the needs of the research community are. One of the goals of the Tuberculosis Annotation Jamboree, held in Washington DC on March 7th-8th 2012, was therefore to provide an overview of the current status of three key Tuberculosis resources, TubercuList (tuberculist.epfl.ch), TB Database (www.tbdb.org), and Pathosystems Resource Integration Center (PATRIC, www.patricbrc.org). Here we summarize some key updates and upcoming features in TubercuList, and provide an overview of the PATRIC site and its online tools for pathogen RNA-Seq analysis.