965 resultados para quantum dots
Resumo:
The temperature-dependent photoluminescence (PL) properties of InAs/GaAs self-organized quantum dots (QDs) have been investigated at high excitation power. The fast redshift of the ground-state and the first excited-state PL energy with increasing temperature was observed. The temperature-dependent linewidth of the QD ground state with high carrier density is different from that with low carrier density. Furthermore, we observed an increasing PL intensity of the first excited state of QDs with respect to that of the ground state and demonstrate a local equilibrium distribution of carriers between the ground state and the first excited state for the QD ensemble at high temperature (T > 80 K). These results provide evidence for the slowdown of carrier relaxation from the first excited state to the ground state in InAs/GaAs quantum dots.
Resumo:
Glass spherical microcavities containing CdSexS1-x semiconductor quantum dots (QDs) are fabricated. The coupling between the optical emission of embedded CdSexS1-x QDs and spherical cavity modes is realized. When the luminescence of QDs is excited by a laser beam, the strong whispering gallery mode resonance with high Q factors is achieved in the photoluminescence spectra. (C) 2001 American Institute of Physics.
Resumo:
The size and shape Evolution of self-assembled InAs quantum dots (QDs) influenced by 2.0-ML InAs seed layer has been systematically investigated for 2.0, 2.5, and 2.9-ML deposition on GaAs(1 0 0) substrate. Based on comparisons with the evolution of InAs islands on single layer samples at late growth stage, the bimodal size distribution of InAs islands at 2.5-ML InAs coverage and the formation of larger InAs quantum dots at 2.9-ML deposition have been observed on the second InAs layer. The further cross-sectional transmission electron microscopy measurement indicates the larger InAs QDs: at 2.9-ML deposition on the second layer are free of dislocation. In addition, the interpretations for the size and shape evolution of InAs/GaAs QDs on the second layer will be presented. (C) 2001 Elsevier Science B.V. All lights reserved.
Resumo:
Red shifts of emission wavelength of self-organized In(Cla)As/GaAs quantum dots (QDs) covered by 3 nm thick InxGa1-xAs layer with three different In mole fractions (x = 0.1, 0.2 and 0.3, respectively) have been observed. Transmission electron microscopy images demonstrate that the stress along growth direction in the InAs dots was reduced due to introducing the InxGa1-xAs (x = 0.1, 0.2 and 0.3) covering layer instead of GaAs layer. Atomic force microscopy pictures show a smoother surface of InAs islands covered by an In0.2Ga0.8As layer. It is explained by the calculations that the redshifts of the photoluminescence (PL) spectra from the QDs covered by the InxGa1-xAs (x greater than or equal to 0.1) layers were mainly due to the reducing of the strain other than the InAs/GaAs intermixing in the InAs QDs. The temperature dependent PL spectra further confirm that the InGaAs covering layer can effectively suppress the temperature sensitivity of PL emissions. 1.3 mum emission wavelength with a very narrow linewidth of 19.2 mcV at room temperature has been obtained successfully from In,In0.5Ga0.5As/GaAs self-assembled QDs covered by a 3-nm In0.2Ga0.2As strain reducing layer. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Molecular beam epitaxy-grown self-assembled In(Ga)As/GaAs and InAs/InAlAs/InP quantum dots (QDs) and quantum wires (QWRs) have been studied. By adjusting growth conditions, surprising alignment. preferential elongation, and pronounced sequential coalescence of dots and wires under specific condition are realized. The lateral ordering of QDs and the vertical anti-correlation of QWRs are theoretically discussed. Room-temperature (RT) continuous-wave (CW) lasing at the wavelength of 960 nm with output power of 3.6 W from both uncoated facets is achieved fi-om vertical coupled InAs/GaAs QDs ensemble. The RT threshold current density is 218 A/cm(2). A RT CW output power of 0.6 W/facet ensures at least 3570 h lasing (only drops 0.83 dB). (C) 2001 Elsevier Science B.V, All rights reserved.
Resumo:
We have fabricated a new self-assembled quantum dot system where InGaAs dots are formed on InAlAs wetting layer and embedded in GaAs matrix. The low-temperature photoluminescence and atomic force microscopy measurements confirm the realization of the structure. In contrast to traditional InAs/Ga(Al)As quantum dots, the temperature dependence of the photoluminescence of the dots in such a structure exhibits an electronically decoupled feature due to a higher energy level of the wetting layer which keeps the dots more isolated from each other. (C) 2001 Published by Elsevier Science B.V.
Resumo:
Self-assembled InAs quantum dots (QDs) have been grown by solid-source molecular beam epitaxy on a (311)B InP substrate. Transmission electron microscopy clearly shows that a high density of smaller InAs islands can be obtained by using such a high index substrate. After introducing a lattice-matched underlying In0.52Al0.24Ga0.24As layer, the InAs QDs are much more uniform in size and form two-dimensional well ordered arrays. The photoluminescence (PL) spectra also confirm that the InAs QDs grown on underlying In0.52Al0.24Ga0.24As have a better quality than those grown in the In0.52Al0.48As matrix. A simple calculation indicates that the redshift of the PL peak energy mainly results from InAs QDs on underlying In0.52Al0.24Ga0.24As of large size. (C) 2001 American Institute of Physics.
Resumo:
InAs and InxGa1-xAs (x = 0.2 and 0.5) self-organized quantum dots (QDs) were fabricated on GaAs(0 0 1) by molecular beam epitaxy (MBE) and characterized by atomic force microscopy (AFM), transmission electron microscopy (TEM), acid photoluminescence polarization spectrum (PLP). Both structural and optical properties of InxGa1-xAs QD layer are apparently different from those of InAs QD layer. AFM shows that InxGa1-xAs QDs tend to be aligned along the [1 (1) over bar 0] direction, while InAs QDs are distributed randomly. TEM demonstrates that there is strain modulation along [1 1 0] in the InxGa1-xAs QD layers. PLP shows that In0.5Ga0.5As islands present optical anisotropy along [1 1 0] and [1 (1) over bar 0] due to structural and strain field anisotropy for the islands. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
A systematic study of self-organized In0.5Ga0.5As quantum dots (QDs) and islands grown by molecular beam epitaxy on (100) and (n11) A/B GaAs substrates is given, where n varies from 1 to 5. Low-temperature photoluminescence results show that the properties of the dots have a strong dependence on the substrate orientation as revealed by atomic force microscopy, consistent with the differences in size, shape, and distribution of QDs on different substrates. From (100) to (111) surface, the photoluminescence peak position of dots on B surfaces is found to blueshift more than that on A surfaces. QDs are also formed on (511) A surface. The positional distribution of these dots exhibits a wavy shape, which is related to the corrugated structure of this surface. Two kinds of islands are formed on (111) A surface, but further work is needed to explain the mechanism of these islands. (C) 2001 American Vacuum Society.
Resumo:
The photoluminescence (PL) of In0.55Al0.45As/Al0.5Ga0.5As self-assembled quantum dots has been measured at 15 and 80 K under hydrostatic pressure. The lateral size of the dots ranges from 7 to 62 nm. The emissions from the dots with 26, 52 and 62 nm size have a blue shift under pressure, indicating that these quantum dots have the normal type-I structure with lowest conduction band at the Gamma -valley. However, the PL peak of dots with 7 nm diameter moves to lower energy with increasing pressure. It is a typical character for the X-related transition. Then these small dots have a type-II structure with the X-valley as the lowest conduction level. An envelope-function calculation confirms that the Gamma -like exciton transition energy will rise above the X-like transition energy in the In0.55Al0.45As/Al0.5Ga0.5As structure if the dot size is small enough.
Resumo:
We have studied the effects of postgrowth rapid thermal annealing on the optical properties of 3-nm-height InAs/GaAs quantum dots covered by 3-nm-thick InxGa1-xAs (x = 0, 0.1, and 0.2) overgrowth layer. At higher annealing temperature (T greater than or equal to 750 degreesC), the photoluminescence peak of InGaAs layer has been observed at lower-energy side of the InAs quantum-dot peak. In addition, the blueshift in photoluminescence (PL) emission energy is found to he similar for all samples with increasing the annealing temperature from 650 to 850 degreesC. However, the trend of narrowing of photoluminescence linewidth is significantly different for InAs quantum dots with different In mole fractions in InGaAs overgrowth layer. These results suggest that the intermixing in the lateral direction plays an important role in helping to understand the modification of optical properties induced by rapid thermal annealing. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
Strong temperature dependence of optical properties has been studied in visible InAlAs/AlGaAs quantum dots, by employing photoluminescence (PL) and time-resolved photoluminescence (TRPL) measurements. The fast redshift of the exciton emission peak was observed at much lower temperature range compared to that observed in the InAs/GaAs QDs. In TRPL we did not observe the constant decay time even at low temperature. Instead, the observed decay time increases quickly with increasing temperature, showing 2D properties in the transient dynamic process. We attributed our results to the strong lateral coupling effect, which results in the formation of the local minibands or extended states from the discrete energy levels. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
InAs quantum dots (QDs) grown on GaAs surface are investigated. The observed abnormal photoluminescence (PL) properties, including extremely sharp high-energy peaks, almost temperature-independent linewidth, and fast thermal quenching, are discussed in terms of the strong quantum confinement effects due to the absence of a cap layer and the lack of carrier redistribution channel caused by the small number of QDs capable of contributing to PL and the high-density surface defects. (C) 2000 American Institute of Physics. [S0003-6951(00)01244-4].
Resumo:
In this work we report the photoluminescence (PL) and interband absorption study of Si-modulation-doped multilayer InAs/GaAs quantum dots grown by molecular beam epitaxy (MBE) on (100) oriented GaAs substrates. Low-temperature PL shows a distinctive double-peak feature. Power-dependent PL and transmission electron microscopy (TEM) confirm that they stem from the ground states emission of islands of bimodal size distribution. Temperature-dependent PL study indicates that the family of small dots is ensemble effect dominated while the family of large dots is likely to be dominated by the intrinsic property of single quantum dots (QDs). The temperature-dependent PL and interband absorption measurements are discussed in terms of thermalized redistribution of the carriers among groups of QDs of different sizes in the ensemble. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
The size and shape evolution of self-assembled InAs quantum dots (QDs) influenced by 2.0 ML InAs seed layer has been systematically investigated for 2.0, 2.5, and 2.9 ML deposition on GaAs(100) substrate. Based on comparisons with the formation of large incoherent InAs islands on single-layer samples at late growth stage, the larger coherent InAs quantum dots at 2.9 ML deposition has been observed on the second InAs layer. A simple model analysis accounting for the surface strain distribution influenced by buried islands gives a stronger increment of critical QD diameter for dislocation nucleation on the second layer in comparison with the single-layer samples. Additionally, the inhibition of dislocation nucleation in InGaAs/GaAs large islands can also be explained by our theoretical results. (C) 2000 American Institute of Physics. [S0021-8979(00)08922-2].