848 resultados para polishing slurry
Resumo:
A phase field modelling approach is implemented in the present study towards simulation of microstructure evolution during cooling slope semi solid slurry generation process of A380 Aluminium alloy. First, experiments are performed to evaluate the number of seeds required within the simulation domain to simulate near spherical microstructure formation, occurs during cooling slope processing of the melt. Subsequently, microstructure evolution is studied employing a phase field method. Simulations are performed to understand the effect of cooling rate on the slurry microstructure. Encouraging results are obtained from the simulation studies which are validated by experimental observations. The results obtained from mesoscopic phase field simulations are grain size, grain density, degree of sphericity of the evolving primary Al phase and the amount of solid fraction present within the slurry at different time frames. Effect of grain refinement also has been studied with an aim of improving the slurry microstructure further. Insight into the process has been obtained from the numerical findings, which are found to be useful for process control.
Resumo:
Haloperidol, an antipsychotic drug, was screened for new solid crystalline phases using high throughput crystallization in pursuit of solubility improvement. Due to the highly basic nature of the API, all the solid forms with acids were obtained in the form of salts. Eleven crystalline salts in the form of oxalate (1:1), benzoate (1:1), salicylate (1:1 and 1:2), 4-hydroxybenzoate (1:1), 4-hydroxybenzoate ethyl acetate solvate (1:1:1), 3,4-dihydroxybenzoate (1:1), 3,5-dihydroxybenzoate (1:1), mesylate (1:1), besylate (1:1), and tosylate (1:1) salt were achieved. There is an insertion of carboxylate or sulfonate anion into the hydrogen bonding pattern of haloperidol. The salts with the aliphatic carboxylic acids were found to be more prone to form salt hydrates compared with aromatic carboxylate salts. All the salts were subjected to solubility measurement in water at neutral pH. There was no direct correlation observed between the solubility of the salt and its coformer. All the salts are stable at room temperature as well as after 24 h slurry experiment except the oxalate salt, which showed an unusual phase transformation from its hydrated form to the anhydrous form. A structureproperty relationship was examined to analyze the solubility behavior of the solid forms.
Resumo:
In composite solid propellants, the fuel and oxidizer are held together by a polymer binder. Among the different types of polymeric binders used in solid propellants, hydroxyl terminated polybutadiene (HTPB) is considered as the most versatile. HTPB is conventionally cured using isocyanates to form polyurethanes. However, the incompatibility of isocyanates with energetic oxidizers such as ammonium dinitramide and hydrazinium nitroformate, the short pot life of the propellant slurry, and undesirable side reactions with moisture are limiting factors which adversely affect the mechanical properties of HTPB based propellant. With an aim of resolving these problems, HTPB was chemically transformed to azidoethoxy carbonyl amine terminated polybutadiene and propargyloxy carbonyl amine terminated polybutadiene by adopting appropriate synthesis strategies and characterizing them by spectroscopic and chromatographic techniques. This is the first report on 1,3-dipolar addition reaction involving azide and alkyne end groups for cross-linking HTPB. The blend of these two polymers underwent curing under mild temperature (60 degrees C) conditions through 1,3-dipolar cycloaddition reaction resulting in triazoletriazoline networks. The curing parameters were studied using differential scanning calorimetry. The kinetic parameter, viz., activation energy, was computed to be 107.6 kJ/mol, the preexponential factor was 2.79 x 10(12) s-(1), and the rate constant at 60 degrees C was computed to be 3.64 x 10-(5) s-(1). The cure profile at a given temperature was predicted using the kinetic parameters. Rheological studies revealed that the gel time for curing through the 1,3-dipolar addition is 280 min compared to 120 min for curing through the urethane route. The mechanical properties of the resultant cured polybutadiene network were superior to those of polyurethanes. The cured triazolinetriazole polymer network exhibited biphasic morphology with two glass transitions (T-g) at -56 and 42 degrees C in contrast to the polyurethane which exhibited a single transition at -60 degrees C. This was corroborated by associated morphological changes observed by scanning probe microscopy. The propellant processed using this binder has the advantages of improved pot life as indicated by the end of the mix viscosity which is 165 Pas as compared with 352 Pas for the polyurethane system along with a slow build- up rate. The mechanical properties of the propellant are superior to polyurethane with an improvement of 14% in tensile strength, 22% enhancement in elongation at break, and 12% in modulus.
Resumo:
The effect of applied DC potentials on the bioleaching of a chalcopyrite concentrate in the presence of Acidithiobacillus ferrooxidans is discussed. Copper dissolution was the highest at an applied potential of +600mV (SCE), while all the dissolved copper got cathodically deposited at a negative potential of -600mV (SCE). Electrobioleaching at an applied potential of +600mV (SCE) was established at different pulp densities as a function of time. The effect of applied potentials and electrolytic currents on the activity and growth of bacterial cells was assessed Preadaptation of bacterial cells to the concentrate slurry and electrolytic growth conditions significantly enhanced copper dissolution. Electrochemical and biochemical mechanisms involved in electrobioleaching are illustrated with respect to oxidative dissolution and biocatalysis of anodic oxidation.
Resumo:
The preparation of semisolid slurry of A356 aluminum alloy using an oblique plate was investigated. A356 alloy melt undergoes partial solidification when it flows down on an oblique plate cooled from underneath by counter flowing water. It results in continuous formation of columnar dendrites on plate wall. Due to forced convection, these dendrites are sheared off into equiaxed/fragmented grains and then washed away continuously to produce semisolid slurry at plate exit. Melt pouring temperature provides required condition of solidification whereas plate inclination enables necessary shear for producing semisolid slurry of desired quality. Slurry obtained was solidified in metal mould to produce semisolid-cast billets of desired microstructure. Furthermore, semisolid-cast billets were heat treated to improve surface quality. Microstructures of both semisolid-cast and heat-treated billets were analyzed. Effects of melt pouring temperature and plate inclination on solidification and microstructure of billets produced using oblique plate were described. The investigations involved four different melt pouring temperatures (620, 625, 630 and 635 degrees C) associated with four different plate inclinations (30 degrees, 45 degrees, 60 degrees and 75 degrees). Melt pouring temperature of 625 degrees C with plate inclination of 60 degrees shows fine and globular microstructures and it is the optimum.
Resumo:
Surface texture influences friction during sliding contact conditions. In the present investigation, the effect of surface texture and roughness of softer and harder counter materials on friction during sliding was analyzed using an inclined scratch testing system. In the experiments, two test configurations, namely (a) steel balls against aluminum alloy flats of different surface textures and (b) aluminum alloy pins against steel flats of different surface textures, are utilized. The surface textures were classified into unidirectionally ground, 8-ground, and randomly polished. For a given texture, the roughness of the flat surfaces was varied using grinding or polishing methods. Optical profilometer and scanning electron microscope were used to characterize the contact surfaces before and after the experiments. Experimental results showed that the surface textures of both harder and softer materials are important in controlling the frictional behavior. The softer material surface textures showed larger variations in friction between ground and polished surfaces. However, the harder material surface textures demonstrated a better control over friction among the ground surfaces. Although the effect of roughness on friction was less significant when compared to textures, the harder material roughness showed better correlations when compared to the softer material roughness.
Resumo:
A356 alloy melt solidifies partially when it flows down on an oblique plate cooled from bottom by counter flowing water. Columnar dendrites are continuously formed on the plate wall. Because of the forced convection, these dendrites are sheared off into equiaxed/fragmented grains and then washed away continuously by producing semisolid slurry at plate exit. Plate cooling rate provides required extent/amount of solidification whereas plate length enables necessary shear for producing semisolid slurry of desired quality. Slurry obtained is solidified in metal mould to produce semisolid-cast billets of desired microstructure. Furthermore, semisolid-cast billets are also heat-treated to improve surface quality. Microstructures of both semisolid-cast and heat-treated billets are compared. The effects of plate length and plate cooling rate on solidification and microstructure of billets produced by using oblique plate are illustrated. Three different plate lengths (200 mm, 250 mm, 300 mm) associated with three different heat transfer coefficients (1000, 2000 and 2500 W/(m(2).K)) are involved. Plate length of 250 mm with heat transfer coefficient of 2000 W/(m(2).K) gives fine and globular microstructures and is the optimum as there is absolutely no possibility of sticking of slurry to plate wall.
Resumo:
In recent years, semisolid manufacturing has emerged as an attractive option for near net shape forming of components with aluminum alloys. In this class of processes, the key to success lies mainly in the understanding of rheological behavior of the semi-solid slurry in the temperature range between liquidus and solidus. The present study focuses on the non-Newtonian flow behavior of the pseudo plastic slurry of Al-7Si-0.3Mg alloy for a wide shear range using a high-temperature Searle-type rheometer. The rheological behavior of the slurry is studied with respect to relevant process variables and microstructural features such as shear rate, shear duration, temperature history, primary particle size, shape, and their distribution. The experiments performed are isothermal tests, continuous cooling tests, shear jump tests, and shear time tests. The continuous cooling experiments are aimed toward studying the viscosity and shear stress evolution within the slurry matrix with increasing solid fraction at a constant shear rate. Three different cooling rates are considered and their effect on flow behavior of the slurry was studied under iso-shear condition. Descending shear jump experiments are performed to understand the viscous instability of the slurry.
Resumo:
Molten A356 aluminum alloy flowing on an oblique plate is water cooled from underneath. The melt partially solidifies on plate wall with continuous formation of columnar dendrites. These dendrites are continuously sheared off into equiaxed/fragmented grains and carried away with the melt by producing semisolid slurry collected at plate exit. Melt pouring temperature provides required solidification whereas plate inclination enables necessary shear for producing slurry of desired solid fraction. A numerical model concerning transport equations of mass, momentum, energy and species is developed for predicting velocity, temperature, macrosegregation and solid fraction. The model uses FVM with phase change algorithm, VOF and variable viscosity. The model introduces solid phase movement with gravity effect as well. Effects of melt pouring temperature and plate inclination on hydrodynamic and thermo-solutal behaviors are studied subsequently. Slurry solid fractions at plate exit are 27%, 22%, 16%, and 10% for pouring temperatures of 620 degrees C, 625 degrees C, 630 degrees C, and 635 degrees C, respectively. And, are 27%, 25%, 22%, and 18% for plate inclinations of 30, 45, 60, and 75, respectively. Melt pouring temperature of 625 degrees C with plate inclination of 60 generates appropriate quality of slurry and is the optimum. Both numerical and experimental results are in good agreement with each other. (C) 2015 Taiwan Institute of Chemical Engineers. Published by Elsevier B.V. All rights reserved.
Resumo:
同井是油气在建过程中的重要工程,一般分下套管和注水泥两个过程.本文结合作者近年来的研究,着重阐述了钻井液、前置液、水泥浆在环形空间中流动的流体力学问题,包括:高温高压下的水泥浆流变性、偏心环形空间中浆液的流动特性、钻井液-前置液和前置液-水泥浆界面的稳定性等,介绍了国内外学者对这些问题的研究进展,提出了今后应深入研究的问题.
Resumo:
The slurry erosion-corrosion behaviour of aluminium in aqueous silica slurries containing 0.5 M NaCl, acetic acid and 0.1 M Na2CO3 at open circuit has been investigated using a modified slurry erosion rig. The erosion rates of aluminium in the NaCl and acetic acid slurries were much higher than those in an aqueous slurry without electrolyte additives even though the pure corrosion component was very small. Eroded specimens were examined by scanning electron and optical microscopy. In pure aqueous slurry erosion, the basic mechanism leading to mass loss was the ductile fracture of flakes formed on the eroded surface. In corrosive slurries, however, the mass loss was enhanced by cracking of the flakes induced by stress and corrosion. © 1995.
Resumo:
This paper presents the results from 10 minidrum centrifuge tests conducted at the Schofield Centre, compiled with 4 additional test results from Thusyanthan et al., 2008. All these tests were designed to measure the uplift resistance of a pipeline installed into stiff clay by trenching and backfilling, then uplifted approximately 3 months after installation. All tests were conducted at 1:30 scale using soil obtained from offshore clay samples. Experimental results show that clay blocks remained intact after 3 prototype months of consolidation, and were lifted rather than sheared during pipe pullout. The uplift resistance therefore depends on the weight of the soil cover and the shearing resistance mobilised at the softening contact points between the intact blocks and within the interstitial slurry. Slow drained pullout led to lower resistance than fast pullout, indicating that the drained response is critical for design. The varying scatter shows that peak uplift resistance is very sensitive to the arrangement of the backfill blocks when the cover and pipe diameter are comparable to the block size. Copyright © 2009 by The International Society of Offshore and Polar Engineers (ISOPE).
Resumo:
化学机械抛光(chemical mechanical polishing,CMP)是一项融合化学分解和机械力学的工艺,其中包含了流体动力润滑的作用.在已有润滑方程的基础上,提出并分析了带有离心力项的润滑方程.利用Chebyshev加速超松弛技术对有离心力项的润滑方程进行求解,得到离心力对抛光液压力分布的影响.数值模拟结果表明,压力分布与不带离心力项的润滑方程得出的明显不同;无量纲载荷和转矩随中心膜厚、转角、倾角、抛光垫旋转角速度等参数的变化趋势相同,但数值相差较大,抛光垫旋转角速度越大差别越大.
Resumo:
研究了一种多级气动喷嘴对水煤浆燃料的喷雾特性的影响,采用实验方法研究了水煤浆性质、喷嘴操作工况和喷嘴几何结构对射流雾化细度的影响,对喷嘴出口附近的两相流场进行了数值计算,并针对相关结果进行了分析。研究结果证明,该喷嘴对水煤浆燃料有很好的雾化性能,并为喷嘴的进一步优化提供参考数据.
Resumo:
La contaminación del suelo es una de las principales amenazas para los ecosistemas y la salud humana. Actualmente, desde un punto de vista tanto económico como ambiental, la fitoestabilización es la mejor tecnología para remediar suelos contaminados con elevadas concentraciones de metales como son los suelos mineros. La fitoestabilización asistida consiste en el empleo de plantas y enmiendas orgánicas y/o inorgánicas con el fin de reducir la movilidad y la biodisponibilidad de los contaminantes y recuperar la salud de suelo. En este trabajo se han realizado ensayos en microcosmos y en campo centrándonos en la salud del suelo minero contaminado con Pb y Zn durante un proceso de fitoestabilización empleando enmiendas orgánicas (purines vacunos, gallinaza, estiércol de oveja y lodos de papelera mezclados con gallinaza) y/o la especie metalífera Festuca rubra con el objetivo de (i) estudiar las interacciones suelo-enmienda responsables de los cambios inducidos por el proceso de quimioestabilización en las propiedades físicoquímicas y biológicas del suelo, (ii) evaluar la efectividad del proceso de fitoestabilización sobre suelos vegetados y de la revegetación sobre suelos desnudos (iii) valorar la idoneidad de distintos indicadores químicos y biológicos (parámetros microbianos y de la vegetación) para monitorizar la efectividad de la fitoestabilización asistida en términos de reducción de la biodisponibilidad de metales en el suelo, mejora de la vegetación y de la recuperación de la salud del suelo. La aplicación de enmiendas al suelo minero supone una entrada de materia orgánica y nutrientes que conduce a una disminución de la biodisponibilidad de metales, facilitando la colonización de las plantas y el crecimiento de la vegetación nativa, además de estimular la actividad microbiana del suelo. El pH del suelo es un factor crítico que condiciona la movilidad de los metales y la toxicidad del suelo. Las poblaciones microbianas de las enmiendas no modificaron la diversidad funcional de las comunidades microbianas nativas de la mina. Los purines vacunos y los lodos de papelera mezclados con gallinaza son los tratamientos más efectivos en el proceso de fitoestabilización asistida bajo condiciones de campo. La gallinaza fue el tratamiento que más estimuló el crecimiento de la vegetación nativa y la colonización en los suelos desnudos. El bioensayo de elongación radical de lechuga es un test sensible, sencillo y barato para evaluar la biodisponibilidad de metal y la ecotoxicidad del suelo. Los tocoferoles son biomarcadores de exposición a metales con potencial para su implementación en bioensayos de toxicidad. Este trabajo permite concluir que la población metalífera de F. rubra, combinada con enmiendas orgánicas, es una excelente candidata para los proyectos de fitoestabilización asistida. Además, la monitorización simultánea de los parámetros fisicoquímicos y microbiológicos del suelo y de su ecotoxicidad permite una evaluación adecuada de la salud del suelo, así como la selección de enmiendas apropiadas para el desarrollo de un proceso fitoestabilizador.