940 resultados para optical pupil filters with sine functions
Resumo:
Catholicism has built up a legalistic religion based on two pillars: salvation by works and 'auricular' confession of sins to a priest with judicial functions. Since the Reformation, many consider auricular confession inferior to less institutional and more individual conceptions of faith. This article analyzes how all these historical solutions trade off specialization advantages against exchange costs to produce moral enforcement. After showing the behavioral foundations of confession and the adaptiveness of its historical evolution, it tests hypotheses on its efficacy, exploitation and opportunity cost. Econometric evidence supports the efficacy but not the exploitative character of Catholic confession. It also explains its secular decline as a consequence of two factors. First, the rise in education, which makes moral self-enforcement less costly. Second, the productivity gap suffered by confession, given its necessarily interpersonal nature.
Resumo:
Dermatophytes are highly specialized filamentous fungi which cause the majority of superficial mycoses in humans and animals. The high secreted proteolytic activity of these microorganisms during growth on proteins is assumed to be linked to their particular ability to exclusively infect keratinized host structures such as the skin stratum corneum, hair, and nails. Individual secreted dermatophyte proteases were recently described and linked with the in vitro digestion of keratin. However, the overall adaptation and transcriptional response of dermatophytes during protein degradation are largely unknown. To address this question, we constructed a cDNA microarray for the human pathogenic dermatophyte Trichophyton rubrum that was based on transcripts of the fungus grown on proteins. Profiles of gene expression during the growth of T. rubrum on soy and keratin protein displayed the activation of a large set of genes that encode secreted endo- and exoproteases. In addition, other specifically induced factors potentially implicated in protein utilization were identified, including heat shock proteins, transporters, metabolic enzymes, transcription factors, and hypothetical proteins with unknown functions. Of particular interest is the strong upregulation of key enzymes of the glyoxylate cycle in T. rubrum during growth on soy and keratin, namely, isocitrate lyase and malate synthase. This broad-scale transcriptional analysis of dermatophytes during growth on proteins reveals new putative pathogenicity-related host adaptation mechanisms of these human pathogenic fungi.
Resumo:
BACKGROUND: The exceptionally diverse species flocks of cichlid fishes in East Africa are prime examples of parallel adaptive radiations. About 80% of East Africa's more than 1 800 endemic cichlid species, and all species of the flocks of Lakes Victoria and Malawi, belong to a particularly rapidly evolving lineage, the haplochromines. One characteristic feature of the haplochromines is their possession of egg-dummies on the males' anal fins. These egg-spots mimic real eggs and play an important role in the mating system of these maternal mouthbrooding fish. RESULTS: Here, we show that the egg-spots of haplochromines are made up of yellow pigment cells, xanthophores, and that a gene coding for a type III receptor tyrosine kinase, colony-stimulating factor 1 receptor a (csf1ra), is expressed in egg-spot tissue. Molecular evolutionary analyses reveal that the extracellular ligand-binding and receptor-interacting domain of csf1ra underwent adaptive sequence evolution in the ancestral lineage of the haplochromines, coinciding with the emergence of egg-dummies. We also find that csf1ra is expressed in the egg-dummies of a distantly related cichlid species, the ectodine cichlid Ophthalmotilapia ventralis, in which markings with similar functions evolved on the pelvic fin in convergence to those of the haplochromines. CONCLUSION: We conclude that modifications of existing signal transduction mechanisms might have evolved in the haplochromine lineage in association with the origination of anal fin egg-dummies. That positive selection has acted during the evolution of a color gene that seems to be involved in the morphogenesis of a sexually selected trait, the egg-dummies, highlights the importance of further investigations of the comparative genomic basis of the phenotypic diversification of cichlid fishes.
Resumo:
Although important progresses have been achieved in the therapeutic management of transplant recipients, acute and chronic rejections remain the leading causes of premature graft loss after solid organ transplantation. This, together with the undesirable side effects of immunosuppressive drugs, has significant implications for the long-term outcome of transplant recipients. Thus, a better understanding of the immunological events occurring after transplantation is essential. The immune system plays an ambivalent role in the outcome of a graft. On one hand, some T lymphocytes with effector functions (called alloreactive) can mediate a cascade of events eventually resulting in the rejection, either acute or chronic, of the grafted organ ; on the other hand, a small subset of T lymphocytes, called regulatory T cells, has been shown to be implicated in the control of these harmful rejection responses, among other things. Thus, we focused our interest on the study of the balance between circulating effectors (alloreactive) and regulatory T lymphocytes, which seems to play an important role in the outcome of allografts, in the context of kidney transplantation. The results were correlated with various variables such as the clinical status of the patients, the immunosuppressive drugs used as induction or maintenance agents, and past or current episodes of rejection. We observed that the percentage of the alloreactive T lymphocyte population was correlated with the clinical status of the kidney transplant recipients. Indeed, the highest percentage was found in patients suffering from chronic humoral rejection, whilst patients on no or only minimal immunosuppressive treatment or on sirolimus-based immunosuppression displayed a percentage comparable to healthy non-transplanted individuals. During the first year after renal transplantation, the balance between effectors and regulatory T lymphocytes was tipped towards the detrimental effector immune response, with the two induction agents studied (thymoglobulin and basiliximab). Overall, these results indicate that monitoring these immunological parameters may be very useful for the clinical follow-up of transplant recipients ; these tests may contribute to identify patients who are more likely to develop rejection or, on the contrary, who tolerate well their graft, in order to adapt the immunosuppressive treatment on an individual basis.
Resumo:
Τ cell activation via the Τ cell receptor (TCR) through antigen recognition is one of the key steps to initiate the adaptive immune response. The mechanisms controlling TCR-induced signaling pathways are the subject of intense research, since deregulated signaling in lymphocytes can lead to immunodeficiency, autoimmunity or lymphomas. In Τ lymphocytes a complex composed of CARMA1, BCL10 and MALT1 has been identified to receive signals from TCR proximal events and to induce further signals crucial for Τ cell activation. MALT1 is scaffold protein and a cysteine protease and both functions have been shown, among other effects, to be crucial to initiate the activation of the transcription factors of the nuclear factor κΒ (NF-κΒ) family after TCR-stimulation. Several proteolytic targets have been described recently and all of them play roles in modulating NF-κΒ activation or other aspects of Τ cell activation. In this study, we describe a novel target of MALT1, Caspase-10. Two isoforms of Caspase-10 are cleaved by MALTI in Τ and Β cells after antigen receptor stimulation. Caspases are a family of cysteine proteases that are known for their roles in cell death and certain immune functions. Caspase-10 has so far only been reported to be involved in the induction of apoptosis. However it is very closely related to the well-characterized Caspase-8 that has been reported to be involved in Τ cell activation. In the present study, we describe a crucial role for Caspase-10, but not Caspase-8, in Τ cell activation after TCR stimulation. Jurkat Τ cells silenced for Caspase-10 expression exhibit a dramatic reduction in IL-2 production following stimulation. The data obtained revealed that this is due to severely reduced activation of activator protein-1 (AP-1), another transcription factor family with key functions in the process of Τ cell activation. We observed strongly reduced expression levels of the AP-1 family member c-Fos after Τ cell stimulation. This transcription factor is expressed upon TCR stimulation and is a crucial component of AP-1 transcription factor dimers required for Τ cell activation. In further analysis, it was shown that this defect is not based on reduced transcription, as the c-Fos mRNA levels are not altered, but rather seems to be caused by a defect in translation or protein stability in the absence of Caspase-10. Furthermore, we report a potential interaction of the c-Fos protein and Caspsae-10. This role of Caspase-10 in AP-1 activation however is independent of its cleavage by MALT1, leaving the role of Caspase-10 cleavage in activated lymphocytes unclear. Taken together, these results give new insights into the complex matter of lymphocyte activation whose understanding is crucial for the development of new drugs modulating the immune response or inhibiting lymphoma progression.
Resumo:
The function of most proteins is not determined experimentally, but is extrapolated from homologs. According to the "ortholog conjecture", or standard model of phylogenomics, protein function changes rapidly after duplication, leading to paralogs with different functions, while orthologs retain the ancestral function. We report here that a comparison of experimentally supported functional annotations among homologs from 13 genomes mostly supports this model. We show that to analyze GO annotation effectively, several confounding factors need to be controlled: authorship bias, variation of GO term frequency among species, variation of background similarity among species pairs, and propagated annotation bias. After controlling for these biases, we observe that orthologs have generally more similar functional annotations than paralogs. This is especially strong for sub-cellular localization. We observe only a weak decrease in functional similarity with increasing sequence divergence. These findings hold over a large diversity of species; notably orthologs from model organisms such as E. coli, yeast or mouse have conserved function with human proteins.
Resumo:
En la societat d’avui dia, les empreses depenen en gran part dels seus recursos informàtics. La seva capacitat de supervivència i innovació en el mercat actual, on la competitivitat és cada dia més forta, passa per una infraestructura informàtica que els permeti, no només desplegar i implantar ordinadors i servidors de manera ràpida i eficient sinó que també les protegeixi contra parades del sistema informàtic, problemes amb servidors, caigudes o desastres físics de hardware.Per evitar aquests problemes informàtics susceptibles de poder parar el funcionament d’una empresa es va començar a treballar en el camp de la virtualització informàtica amb l’objectiu de poder trobar solucions a aquests problemes a la vegada que s’aprofitaven els recursos de hardware existents d’una manera més òptim a i eficient, reduint així també el cost de la infraestructura informàtica.L’objectiu principal d’aquest treball és veure en primer pla la conversió d’una empresa real amb una infraestructura informàtica del tipus un servidor físic -una funció cap a una infraestructura virtual del tipus un servidor físic -varis servidors virtual -vàries funcions. Analitzarem l’estat actual de l’empresa, servidors i funcions, adquirirem el hardware necessari i farem la conversió de tots els seus servidors cap a una nova infraestructura virtual.Faig especial atenció a les explicacions de perquè utilitzo una opció i no un altre i també procuro sempre donar vàries opcions. Igualment remarco en quadres verds observacions a tenir en compte complementàries al que estic explicant en aquell moment, i en quadres vermells temes en els que s’ha de posar especial atenció en el moment en que es fan. Finalment, un cop feta la conversió, veurem els molts avantatges que ens ha reportat aquesta tecnologia a nivell de fiabilitat, estabilitat, capacitat de tolerància a errades, capacitat de ràpid desplegament de noves màquines, capacitat de recuperació del sistema i aprofitament de recursos físics.
Resumo:
Calbindin D-28k is a calcium-binding protein which is not expressed by dorsal root ganglion cells cultured from 6-day-old (E6) chick embryos. When soluble muscle extracts from embryos at E11, E18 or chickens 2 weeks after hatching were added immediately after seeding, dorsal root ganglia cells grown at E6 displayed neuronal subpopulations expressing calbindin immunoreactivity with time; the effect of muscle extract on the percentage of calbindin-immunoreactive dorsal root ganglia cells followed a dose-response curve. When muscle extract was added to cultures after a 3 day delay, the percentage of calbindin-expressing neurons was unchanged. The effect produced by muscle extract and, to a lesser degree, skin extract on the appearance of calbindin-positive neurons was not reproduced by brain or liver extracts while all four exerted a trophic action on cultured neurons. Hence it is assumed that muscle extract contains a factor which produces an inductive effect on the initiation of calbindin-expression by uncommitted subpopulations of sensory neurons rather than a trophic influence on the selective survival of covertly committed neuronal subpopulations. The fact that muscle extract promoted calbindin expression by dorsal root ganglia cells in neuron-enriched as well as in mixed dorsal root ganglion cell cultures indicates that the factor would act directly on sensory neurons rather than indirectly through mediation of non-neuronal cells. Since the active muscular factor was non-dialysable, heat-inactivated, trypsin-sensitive and retained by molecular filters with a cut-off of 30 K, this factor is probably a protein.
Resumo:
The evolution of ants is marked by remarkable adaptations that allowed the development of very complex social systems. To identify how ant-specific adaptations are associated with patterns of molecular evolution, we searched for signs of positive selection on amino-acid changes in proteins. We identified 24 functional categories of genes which were enriched for positively selected genes in the ant lineage. We also reanalyzed genome-wide data sets in bees and flies with the same methodology to check whether positive selection was specific to ants or also present in other insects. Notably, genes implicated in immunity were enriched for positively selected genes in the three lineages, ruling out the hypothesis that the evolution of hygienic behaviors in social insects caused a major relaxation of selective pressure on immune genes. Our scan also indicated that genes implicated in neurogenesis and olfaction started to undergo increased positive selection before the evolution of sociality in Hymenoptera. Finally, the comparison between these three lineages allowed us to pinpoint molecular evolution patterns that were specific to the ant lineage. In particular, there was ant-specific recurrent positive selection on genes with mitochondrial functions, suggesting that mitochondrial activity was improved during the evolution of this lineage. This might have been an important step toward the evolution of extreme lifespan that is a hallmark of ants.
Resumo:
We consider a general class of non-Markovian processes defined by stochastic differential equations with Ornstein-Uhlenbeck noise. We present a general formalism to evaluate relaxation times associated with correlation functions in the steady state. This formalism is a generalization of a previous approach for Markovian processes. The theoretical results are shown to be in satisfactory agreement both with experimental data for a cubic bistable system and also with a computer simulation of the Stratonovich model. We comment on the dynamical role of the non-Markovianicity in different situations.
Resumo:
Currently in Brazil, as in other parts of the world, the concern is great with the increase of degraded agricultural soil, which is mostly related to the occurrence of soil compaction. Although soil texture is recognized as a very important component in the soil compressive behaviors, there are few studies that quantify its influence on the structural changes of Latosols in the Brazilian Cerrado region. This study aimed to evaluate structural changes and the compressive behavior of Latosols in Rio Verde, Goiás, through the modeling of additional soil compaction. The study was carried out using five Latosols with very different textures, under different soil compaction levels. Water retention and soil compression curves, and bearing capacity models were determined from undisturbed samples collected on the B horizons. Results indicated that clayey and very clayey Latosols were more susceptible to compression than medium-textured soils. Soil compression curves at density values associate with edaphic functions were used to determine the beneficial pressure (σ b) , i.e., pressure with optimal water retention, and critical pressure (σcrMAC), i.e., pressure with macroporosity below critical levels. These pressure values were higher than the preconsolidation pressure (σp), and therefore characterized as additional compaction. Based on the compressive behavior of these Latosols, it can be concluded that the combined preconsolidation pressure, beneficial pressure and critical pressure allow a better understanding of compression processes of Latosols.
Resumo:
The genomic era has revealed that the large repertoire of observed animal phenotypes is dependent on changes in the expression patterns of a finite number of genes, which are mediated by a plethora of transcription factors (TFs) with distinct specificities. The dimerization of TFs can also increase the complexity of a genetic regulatory network manifold, by combining a small number of monomers into dimers with distinct functions. Therefore, studying the evolution of these dimerizing TFs is vital for understanding how complexity increased during animal evolution. We focus on the second largest family of dimerizing TFs, the basic-region leucine zipper (bZIP), and infer when it expanded and how bZIP DNA-binding and dimerization functions evolved during the major phases of animal evolution. Specifically, we classify the metazoan bZIPs into 19 families and confirm the ancient nature of at least 13 of these families, predating the split of the cnidaria. We observe fixation of a core dimerization network in the last common ancestor of protostomes-deuterostomes. This was followed by an expansion of the number of proteins in the network, but no major dimerization changes in interaction partners, during the emergence of vertebrates. In conclusion, the bZIPs are an excellent model with which to understand how DNA binding and protein interactions of TFs evolved during animal evolution.
Resumo:
Trail pheromones do more than simply guide social insect workers from point A to point B. Recent research has revealed additional ways in which they help to regulate colony foraging, often via positive and negative feedback processes that influence the exploitation of the different resources that a colony has knowledge of. Trail pheromones are often complementary or synergistic with other information sources, such as individual memory. Pheromone trails can be composed of two or more pheromones with different functions, and information may be embedded in the trail network geometry. These findings indicate remarkable sophistication in how trail pheromones are used to regulate colony-level behavior, and how trail pheromones are used and deployed at the individual level.
Resumo:
Aggregates of oxygen vacancies (F centers) represent a particular form of point defects in ionic crystals. In this study we have considered the combination of two oxygen vacancies, the M center, in the bulk and on the surface of MgO by means of cluster model calculations. Both neutral and charged forms of the defect M and M+ have been taken into account. The ground state of the M center is characterized by the presence of two doubly occupied impurity levels in the gap of the material; in M+ centers the highest level is singly occupied. For the ground-state properties we used a gradient corrected density functional theory approach. The dipole-allowed singlet-to-singlet and doublet-to-doublet electronic transitions have been determined by means of explicitly correlated multireference second-order perturbation theory calculations. These have been compared with optical transitions determined with the time-dependent density functional theory formalism. The results show that bulk M and M+ centers give rise to intense absorptions at about 4.4 and 4.0 eV, respectively. Another less intense transition at 1.3 eV has also been found for the M+ center. On the surface the transitions occur at 1.6 eV (M+) and 2 eV (M). The results are compared with recently reported electron energy loss spectroscopy spectra on MgO thin films.
Resumo:
Ever since the pre-molecular era, the birth of new genes with novel functions has been considered to be a major contributor to adaptive evolutionary innovation. Here, I review the origin and evolution of new genes and their functions in eukaryotes, an area of research that has made rapid progress in the past decade thanks to the genomics revolution. Indeed, recent work has provided initial whole-genome views of the different types of new genes for a large number of different organisms. The array of mechanisms underlying the origin of new genes is compelling, extending way beyond the traditionally well-studied source of gene duplication. Thus, it was shown that novel genes also regularly arose from messenger RNAs of ancestral genes, protein-coding genes metamorphosed into new RNA genes, genomic parasites were co-opted as new genes, and that both protein and RNA genes were composed from scratch (i.e., from previously nonfunctional sequences). These mechanisms then also contributed to the formation of numerous novel chimeric gene structures. Detailed functional investigations uncovered different evolutionary pathways that led to the emergence of novel functions from these newly minted sequences and, with respect to animals, attributed a potentially important role to one specific tissue--the testis--in the process of gene birth. Remarkably, these studies also demonstrated that novel genes of the various types significantly impacted the evolution of cellular, physiological, morphological, behavioral, and reproductive phenotypic traits. Consequently, it is now firmly established that new genes have indeed been major contributors to the origin of adaptive evolutionary novelties.