875 resultados para optic disc
Resumo:
We report on novel liquid crystals with extremely large flexoelectric coefficients in a range of ultra-fast photonic modes, namely 1) the uniform lying helix, that leads to in-plain switching, birefringence phase devices with 100 μs switching times at low fields, i.e.2-5 V/μm, and analogue or grey scale capability, 2) the uniform standing helix, using planar surface alignment and in-plane fields, with sub ms response times and optical contrasts in excess of 5000:1 with a perfect optically isotropic or black "off state", 3) the wide temperature range blue phase that leads to field controlled reflective color, 4) chiral nematic optical reflectors electric field tunable over a wide wavelength range and 5) high slope efficiency, wide wavelength range tunable narrow linewidth microscopic liquid crystal lasers. © 2011 Materials Research Society.
Resumo:
Using in-plane electric fields, the electrical induction of the uniform lying helix (ULH) alignment in chiral nematic liquid crystals is reported. This process permits spontaneous induction of the ULH alignment to give an in-plane optic axis, without the need for complex processing. Flexoelectro-optic switching is subsequently obtained by holding the in-plane electrodes at a common voltage and addressing via a third, plane-parallel electrode on a second, or upper, substrate to give a field across the device in the viewing direction. For this device, in optimized bimesogenic materials, we demonstrate full intensity modulation and sub-millisecond response times at typical device temperatures. © 2012 American Institute of Physics.
Resumo:
An innovative technique based on optical fibre sensing that allows continuous strain measurement has recently been introduced in structural health monitoring. Known as Brillouin Optical Time-Domain Reflectometry (BOTDR), this distributed optical fibre sensing technique allows measurement of strain along the full length (up to 10km) of a suitably installed optical fibre. Examples of recent implementations of BOTDR fibre optic sensing in piles are described in this paper. Two examples of distributed optical fibre sensing in piles are demonstrated using different installation techniques. In a load bearing pile, optical cables were attached along the reinforcing bars by equally spaced spot gluing to measure the axial response of pile to ground excavation induced heave and construction loading. Measurement of flexural behaviour of piles is demonstrated in the instrumentation of a secant piled wall where optical fibres were embedded in the concrete by simple endpoint clamping. Both methods have been verified via laboratory works. © 2009 IOS Press.
Resumo:
Surface temperature measurements from two discs of a gas turbine compressor rig are used as boundary conditions for the transient conduction solution (inverse heat transfer analysis). The disc geometry is complex, and so the finite element method is used. There are often large radial temperature gradients on the discs, and the equations are therefore solved taking into account the dependence of thermal conductivity on temperature. The solution technique also makes use of a multigrid algorithm to reduce the solution time. This is particularly important since a large amount of data must be analyzed to obtain correlations of the heat transfer. The finite element grid is also used for a network analysis to calculate the radiant heat transfer in the cavity formed between the two compressor discs. The work discussed here proved particularly challenging as the disc temperatures were only measured at four different radial locations. Four methods of surface temperature interpolation are examined, together with their effect on the local heat fluxes. It is found that the choice of interpolation method depends on the available number of data points. Bessel interpolation gives the best results for four data points, whereas cubic splines are preferred when there are considerably more data points. The results from the analysis of the compressor rig data show that the heat transfer near the disc inner radius appears to be influenced by the central throughflow. However, for larger radii, the heat transfer from the discs and peripheral shroud is found to be consistent with that of a buoyancy-induced flow.
Resumo:
Reliable means of predicting ingestion in cavities adjacent to the main gas path are increasingly being sought by engineers involved in the design of gas turbines. In this paper, analysis is to be presented that results from an extended research programme, MAGPI, sponsored by the EU and several leading gas turbine manufactures and universities. Extensive use is made of CFD modelling techniques to understand the aerodynamic behaviour of a turbine stator well cavity, focusing on the interaction of cooling air supply with the main annulus gas. The objective of the study has been to benchmark a number of CFD codes and numerical techniques covering RANS and URANS calculations with different turbulence models in order to assess the suitability of the standard settings used in the industry for calculating the mechanics of the flow travelling between cavities in a turbine through the main gas path. The modelling methods employed have been compared making use of experimental data gathered from a dedicated two-stage turbine rig, running at engine representative conditions. Extensive measurements are available for a range of flow conditions and alternative cooling arrangements. The limitations of the numerical methods in calculating the interaction of the cooling flow egress and the main stream gas, and subsequent ingestion into downstream cavities in the engine (i.e. re-ingestion), have been exposed. This has been done without losing sight of the validation of the CFD for its use for predicting heat transfer, which was the main objective of the partners of the MAGPI Work- Package 1 consortium. Copyright © 2012 by ASME.
Resumo:
Optical switching functionality is demonstrated in PCB integrated multimode passive polymer waveguides using a localised liquid-crystal cladding structure. Waveguide switching contrast of 15 dB is achieved with only 0.5 dB of on-state excess loss. © 2009 OSA.
Resumo:
Phylogenetic relationships of labeonine cyprinids of the disc-bearing group (Pisces. Teleostei). Zoological Studies 44 (1): 130-143. The disc-bearing group is composed of 4 currently recognized cyprinid genera: Discocheilus, Discogobio, Garra, and Placocheilus. This group is defined as having a lower lip modified to form a mental adhesive disc whose posterior margin is not continuous with the mental region, and includes 91 widely distributed species in tropical Africa and Asia. So far, it is represented in China by 28 species (about 1/3 of the total number) of all 4 genera. A phylogenetic analysis, based on 29 morphological characters scored from first-hand observations of 23 of the Chinese species examined, revealed that the disc-bearing group forms a monophyletic clade in which Garra is the basal lineage, and Placocheilus constitutes a subclade with the sister pair of Discocheilus and Discogobio. In such a phylogenetic framework, the validity of each genus of the disc-bearing group was evaluated. It was confirmed that Discocheilus, Discogobio and Placocheilus represent 3 valid cyprinid genera. Evidence provided in this phylogenetic analysis, incorporated with conclusions reached in the known literature, reveals that the monophyly and validity of Garra need to be further studied using observations of more Garra species. Additional characters should also be examined, as the characters utilized in this study and in Abebe's with Getahun's (1999) study are insufficient to resolve the monophyly of Garra.
Resumo:
This paper describes part of the monitoring undertaken at Abbey Mills shaft F, one of the main shafts of Thames Water's Lee tunnel project in London, UK. This shaft, with an external diameter of 30 m and 73 m deep, is one of the largest ever constructed in the UK and consequently penetrates layered and challenging ground conditions (Terrace Gravel, London Clay, Lambeth Group, Thanet Sand Formation, Chalk Formation). Three out of the twenty 1-2 m thick and 84 m deep diaphragm wall panels were equipped with fibre optic instrumentation. Bending and circumferential hoop strains were measured using Brillouin optical time-domain reflectometry and analysis technologies. These measurements showed that the overall radial movement of the wall was very small. Prior to excavation during a dewatering trial, the shaft may have experienced three-dimensional deformation due to differential water pressures. During excavation, the measured hoop and bending strains of the wall in the chalk exceeded the predictions. This appears to be related to the verticality tolerances of the diaphragm wall and lower circumferential hoop stiffness of the diaphragm walls at deep depths. The findings from this case study provide valuable information for future deep shafts in London. © ICE Publishing: All rights reserved.
Resumo:
A novel Y-branch based monolithic transceiver with a superluminescent diode and a waveguide photodiode (Y-SDL-PD) is designed and fabricated by the method of bundle integrated waveguide (BIG) as the scheme for monolithic integration and angled Y-branch as the passive bi-directional waveguide. The simulations of BIG and Y-branches show low losses and improved far-field patterns, based on the beam propagation method (BPM). The amplified spontaneous emission of the device is up to 10mW at 120mA with no threshold and saturation. Spectral characteristics of about 30 nm width and less than 1 dB modulation are achieved using the built-in anti-lasing ability of Y-branch. The beam divergence angles in horizontal and vertical directions are optimized to as small as 12 degrees x 8 degrees, resulting in good fibre coupling.
Resumo:
A 2 x 2 electro-optic switch is experimentally demonstrated using the optical structure of a Mach-Zehnder interferometer (MZI) based on a submicron rib waveguide and the electrical structure of a PIN diode on silicon-on-insulator (SOI). The switch behaviour is achieved through the plasma dispersion effect of silicon. The device has a modulation arm of I mm in length and cross-section of 400 nmx340 nm. The measurement results show that the switch has a V pi L pi figure of merit of 0.145 V-cm and the extinction ratios of two output ports and cross talk are 40 dB, 28 dB and -28 dB, respectively. A 3 dB modulation bandwidth of 90 MHz and a switch time of 6.8 ns for the rise edge and 2.7 ns for the fall edge are also demonstrated.
Resumo:
In this paper, we present a theoretical approach to optimize the design of a fiber optic hydrophone based on a flat diaphragm and multilayer fiber coils. In this theoretical analysis, both the radial and tangential strain induced fiber length changes are taken into account. The result shows that the position of the fiber coils and the number of the fiber layers have significant effects on the sensitivity, of the hydrophone. By optimizing these parameters, a higher sensitivity can be achieved. Sample hydrophones are fabricated and tested. The experimental result is in good agreement with the theoretical result, which shows this theoretical approach is effective in optimizing the design of the fiber optic hydrophone. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
A thermo-optic variable optical attenuator (VOA) based on a Mach-Zehnder interferometer and multimode-interference coupler is fabricated. Not a single-mode but a multimode waveguide is used as the input and output structures of the optical field, which greatly reduces the coupling loss of the VOA with a normal single-mode fiber. The insertion loss of the fabricated VOA is 2.52 to 2.82 dB at the wavelength of 1520 to 1570 nm. The polarization dependent loss is 0.28 to 0.45 dB at the same wavelength range. Its maximum attenuation range is up to 26.3 dB when its power consumption is 369 mW. The response frequency of the fabricated VOA is about 10 kHz. (C) 2004 Society of Photo-Optical Instrumentation Engineers.