936 resultados para melanopsin-containing intrinsically photosensitive retinal ganglion cells
Resumo:
Ribbon synapses of the vertebrate retina are specialized synapses that release neurotransmitter by synaptic vesicle exocytosis in a manner that is proportional to the level of depolarization of the cell. This release property is different from conventional neurons, in which the release of neurotransmitter occurs as a short-lived burst triggered by an action potential. Synaptic vesicle exocytosis is a calcium regulated process that is dependent on a set of interacting synaptic proteins that form the so-called SNARE (soluble N-ethylmaleimide sensitive factor attachment protein receptor) complex. Syntaxin 3B has been identified as a specialized SNARE molecule in ribbon synapses of the rodent retina. However, the best physiologically-characterized neuron that forms ribbon-style synapses is the rod-dominant or Mb1 bipolar cell of the goldfish retina. We report here the molecular characterization of syntaxin 3B from the goldfish retina. Using a combination of reverse transcription (RT) polymerase chain reaction (PCR) and immunostaining with a specific antibody, we show that syntaxin 3B is highly enriched in the plasma membrane of bipolar cell synaptic terminals of the goldfish retina. Using membrane capacitance measurements we demonstrate that a peptide derived from goldfish syntaxin 3B inhibits synaptic vesicle exocytosis. These experiments demonstrate that syntaxin 3B is an important factor for synaptic vesicle exocytosis in ribbon synapses of the vertebrate retina.
Resumo:
Parylenes are poly(p-xylylene) polymers that are widely used as moisture barriers and in biomedicine because of their good biocompatibility. We have investigated MeV ion beam lithography using 16O+ ions for writing defined patterns in Parylene-C, which is evaluated as a coating material for the Cochlear Implant (CI) electrode array, a neuroprosthesis to treat some forms of deafness. Parylene-C and -F on silicon and glass substrates as well as 50 μm thick PTFE were irradiated to different fluences (1×1013-1×10161×1013-1×1016 1 MeV 16O+ ions cm−2) through aperture masks under high vacuum and a low pressure (<10−3 mbar) oxygen atmosphere. Biocompatibility of the irradiated and unirradiated surfaces was tested by cell-counting to determine the proliferation of murine spiral ganglion cells. The results reveal that an oxygen ion beam can be used to pattern Parylene-C and -F without using a liquid solvent developer in a similar manner to PTFE but with a ∼25× smaller removal rate. Biocompatibility tests showed no difference in cell adhesion between irradiated and unirradiated areas or ion fluence dependence. Coating the Parylene surface with an adhesion-promoting protein mixture had a much greater effect on cell proliferation.
Resumo:
Light triggers the phototransduction cascade by activating the visual pigment rhodopsin (Rho → Rho*). Phosphorylation of Rho* by rhodopsin kinase (RK) is necessary for the fast recovery of sensitivity after intense illumination. Ca2+ ions, acting through Ca2+-binding proteins, have been implicated in the desensitization of phototransduction. One such protein, recoverin, has been proposed to regulate RK activity contributing to adaptation to background illumination in retinal photoreceptor cells. In this report, we describe an in vitro assay system using isolated retinas that is well suited for a variety of biochemical assays, including assessing Ca2+ effects on Rho* phosphorylation. Pieces of bovine retina with intact rod outer segments were treated with pore-forming staphylococcal α-toxin, including an α-toxin mutant that forms pores whose permeability is modulated by Zn2+. The pores formed through the plasma membranes of rod cells permit the diffusion of small molecules <2 kDa but prevent the loss of proteins, including recoverin (25 kDa). The selective permeability of these pores was confirmed by using the small intracellular tracer N-(2-aminoethyl) biotinamide hydrochloride. Application of [γ-32P]ATP to α-toxin-treated, isolated retina allowed us to monitor and quantify phosphorylation of Rho*. Under various experimental conditions, including low and high [Ca2+]free, the same level of Rho* phosphorylation was measured. No differences were observed between low and high [Ca2+]free conditions, even when rods were loaded with ATP and the pores were closed by Zn2+. These results suggest that under physiological conditions, Rho* phosphorylation is insensitive to regulation by Ca2+ and Ca2+-binding proteins, including recoverin.
Resumo:
Persistent directional movement of neutrophils in shallow chemotactic gradients raises the possibility that cells can increase their sensitivity to the chemotactic signal at the front, relative to the back. Redistribution of chemoattractant receptors to the anterior pole of a polarized neutrophil could impose asymmetric sensitivity by increasing the relative strength of detected signals at the cell’s leading edge. Previous experiments have produced contradictory observations with respect to receptor location in moving neutrophils. To visualize a chemoattractant receptor directly during chemotaxis, we expressed a green fluorescent protein (GFP)-tagged receptor for a complement component, C5a, in a leukemia cell line, PLB-985. Differentiated PLB-985 cells, like neutrophils, adhere, spread, and polarize in response to a uniform concentration of chemoattractant, and orient and crawl toward a micropipette containing chemoattractant. Recorded in living cells, fluorescence of the tagged receptor, C5aR–GFP, shows no apparent increase anywhere on the plasma membrane of polarized and moving cells, even at the leading edge. During chemotaxis, however, some cells do exhibit increased amounts of highly folded plasma membrane at the leading edge, as detected by a fluorescent probe for membrane lipids; this is accompanied by an apparent increase of C5aR–GFP fluorescence, which is directly proportional to the accumulation of plasma membrane. Thus neutrophils do not actively concentrate chemoattractant receptors at the leading edge during chemotaxis, although asymmetrical distribution of membrane may enrich receptor number, relative to adjacent cytoplasmic volume, at the anterior pole of some polarized cells. This enrichment could help to maintain persistent migration in a shallow gradient of chemoattractant.
Resumo:
Proteins of the kinesin superfamily define a class of microtubule-dependent motors that play crucial roles in cell division and intracellular transport. To study the molecular mechanism of axonal transport, a cDNA encoding a new kinesin-like protein called KIF3C was cloned from a mouse brain cDNA library. Sequence and secondary structure analysis revealed that KIF3C is a member of the KIF3 family. In contrast to KIF3A and KIF3B, Northern and Western analysis indicated that KIF3C expression is highly enriched in neural tissues such as brain, spinal cord, and retina. When anti-KIF3C antibodies were used to stain the cerebellum, the strongest signal came from the cell bodies and dendrites of Purkinje cells. In retina, anti-KIF3C mainly stains the ganglion cells. Immunolocalization showed that the KIF3C motor in spinal cord and sciatic nerve is mainly localized in cytoplasm. In spinal cord, the KIF3C staining was punctate; double labeling with anti-giantin and anti-KIF3C showed a clear concentration of the motor protein in the Golgi complex. Staining of ligated sciatic nerves demonstrated that the KIF3C motor accumulated at the proximal side of the ligated nerve, which suggests that KIF3C is an anterograde motor. Immunoprecipitation experiments revealed that KIF3C and KIF3A, but not KIF3B, were coprecipitated. These data, combined with previous data from other labs, indicate that KIF3C and KIF3B are “variable” subunits that associate with a common KIF3A subunit, but not with each other. Together these results suggest that KIF3 family members combinatorially associate to power anterograde axonal transport.
Resumo:
Nerve growth factor (NGF), a member of the neurotrophin family, is crucial for survival of nociceptive neurons during development. Recently, it has been shown to play an important role in nociceptive function in adults. NGF is up-regulated after inflammatory injury of the skin. Administration of exogenous NGF either systemically or in the skin causes thermal hyperalgesia within minutes. Mast cells are considered important components in the action of NGF, because prior degranulation abolishes the early NGF-induced component of hyperalgesia. Substances degranulated by mast cells include serotonin, histamine, and NGF. Blockade of histamine receptors does not prevent NGF-induced hyperalgesia. The effects of blocking serotonin receptors are complex and cannot be interpretable uniquely as NGF losing its ability to induce hyperalgesia. To determine whether NGF has a direct effect on dorsal root ganglion neurons, we have begun to investigate the acute effects of NGF on capsaicin responses of small-diameter dorsal root ganglion cells in culture. NGF acutely conditions the response to capsaicin, suggesting that NGF may be important in sensitizing the response of sensory neurons to heat (a process that is thought to operate via the capsaicin receptor VR1). We also have found that ligands for the trkB receptor (brain-derived neurotrophic factor and neurotrophin-4/5) acutely sensitize nociceptive afferents and elicit hyperalgesia. Because brain-derived neurotrophic factor is up-regulated in trkA positive cells after inflammatory injury and is transported anterogradely, we consider it to be a potentially important peripheral component involved in neurotrophin-induced hyperalgesia.
Resumo:
The developing brain is particularly susceptible to lead toxicity; however, the cellular effects of lead on neuronal development are not well understood. The effect of exposure to nanomolar concentrations of lead on several parameters of the developing retinotectal system of frog tadpoles was tested. Lead severely reduced the area and branchtip number of retinal ganglion cell axon arborizations within the optic tectum at submicromolar concentrations. These effects of lead on neuronal growth are more dramatic and occur at lower exposure levels than previously reported. Lead exposure did not interfere with the development of retinotectal topography. The deficient neuronal growth does not appear to be secondary to impaired synaptic transmission, because concentrations of lead that stunted neuronal growth were lower than those required to block synaptic transmission. Subsequent treatment of lead-exposed animals with the chelating agent 2,3-dimercaptosuccinic acid completely reversed the effect of lead on neuronal growth. These studies indicate that impaired neuronal growth may be responsible in part for lead-induced cognitive deficits and that chelator treatment counteracts this effect.
Resumo:
A pentapeptide open reading frame equipped with a canonical ribosome-binding site is present in the Escherichia coli 23S rRNA. Overexpression of 23S rRNA fragments containing the mini-gene renders cells resistant to the ribosome-inhibiting antibiotic erythromycin. Mutations that change either the initiator or stop codons of the peptide mini-gene result in the loss of erythromycin resistance. Nonsense mutations in the mini-gene also abolish erythromycin resistance, which can be restored in the presence of the suppressor tRNA, thus proving that expression of the rRNA-encoded peptide is essential for the resistance phenotype. The ribosome appears to be the likely target of action of the rRNA-encoded pentapeptide, because in vitro translation of the peptide mini-gene decreases the inhibitory action of erythromycin on cell-free protein synthesis. Thus, the new mechanism of drug resistance reveals that in addition to the structural and functional role of rRNA in the ribosome, it may also have a peptide-coding function.
Resumo:
The same heterozygous T -> C transition at nt 8567 of the von Willebrand factor (vWF) transcript was found in two unrelated patients with type III) von Willebrand disease, with no other apparent abnormality. In one family, both alleles were normal in the parents and one sister; thus, the mutation originated de novo in the proposita. The second patient also had asymptomatic parents who, however, were not available for study. The structural consequences of the identified mutation, resulting in the CyS2010 -> Arg substitution, were evaluated by expression of the vWF carboxyl-terminal domain containing residues 1366-2050. Insect cells infected with recombinant baculovirus expressing normal vWF sequence secreted a disulfide linked dimeric molecule with an apparent molecular mass of 150 kDa before reduction, yielding a single band of 80 kDa after disulfide bond reduction. In contrast, cells expressing the mutant fragment secreted a monomeric molecule of apparent molecular mass of 80 kDa, which remained unchanged after reduction. We conclude that CyS2010 is essential for normal dimerization of vWF subunits through disulfide bonding of carboxyl-terminal domains and that a heterozygous mutation in the corresponding codon is responsible for defective multimer formation in type III) von Willebrand disease.
Resumo:
Trabalho Final do Curso de Mestrado Integrado em Medicina, Faculdade de Medicina, Universidade de Lisboa, 2014
Resumo:
Neonatal X-irradiation of central nervous system (CNS) tissue markedly reduces the glial population in the irradiated area. Previous in vivo studies have demonstrated regenerative success of adult dorsal root ganglion (DRG) neurons into the neonatally-irradiated spinal cord. The present study was undertaken to determine whether these results could be replicated in an in vitro environment. The lumbosacral spinal cord of anaesthetised Wistar rat pups, aged between 1 and 5 days, was subjected to a single dose (40 Gray) of X-irradiation. A sham-irradiated group acted as controls. Rats were allowed to reach adulthood before being killed. Their lumbosacral spinal cords were dissected out and processed for sectioning in a cryostat. Cryosections (10 mum-thick) of the spinal cord tissue were picked up on sterile glass coverslips and used as substrates for culturing dissociated adult DRG neurons. After an appropriate incubation period, cultures were fixed in 2% paraformaldehyde and immunolabelled to visualise both the spinal cord substrate using anti-glial fibrillary acidic protein (GFAP) and the growing DRG neurons using anti-growth associated protein (GAP-43). Successful growth of DRG neurites was observed on irradiated, but not on non-irradiated, sections of spinal cord. Thus, neonatal X-irradiation of spinal cord tissue appears to alter its environment such that it can later support, rather than inhibit, axonal regeneration. It is suggested that this alteration may be due, at least in part, to depletion in the number of and/or a change in the characteristics of the glial cells. (C) 2000 ISDN. Published by Elsevier Science Ltd. All rights reserved.
Resumo:
A clinical isolate of Proteus mirabilis containing R-plasmid RP1 (R+ cells), grown in both iron- and carbon- limited chemically defined media in mixed culture with plasmid-free (R- cells), did not disappear as expected, due to adherence of R+ cells to the wall of the chemostat vessel. Plasmid RP1 promoted adherence to glass and to medical prostheses. The hydrophobicity and surface charge of R+ cells were different from those of R- cells and both factors may contribute to the adherence of R+ cells to surfaces. The mode of cultivation of the cells, whether batch or continuous culture, were also found to affect the result. Antibodies raised against homologous cells increased the surface hydrophobicity of both R+ and R- cells and eliminated the differences between them. Results for surface hydrophobicity varied with the method used for measuring it. R+ cells were more sensitive than R- cells to tbe bacteridical action of normal serum and whole blood and to phagocytosis as measured by chemiluminescence. No clear differences were revealed in the protein antigens of R+ and R- cells by both SDS PAGE gels and immunoblots reacted with homologous antibodies. However, lectins revealed differences in the sugars exposed on the cell surfaces. Chemical analysis of R&43 and R- cells also revealed differences in the content of 2-keto-3-deoxy-D-manno-2-octulosonate, lipopolysaccharide and total fatty acids, when cells were grown in media containing added iron; however, no qualitative differences in the lipopolysaccharide were found. Removal of iron from the medium was found to have considerable effects on the chemical structure of R+ cells but not of R- ones. Adhesion to prostheses and to leucocytes is discussed in the light of the results and the clinical relevance outlined with respect to the initiation of infection and the association of virulence with antibiotic resistance.
Resumo:
Räjähdysvaaralliset tilat aiheuttavat lisävaatimuksia instrumentointisuunnittelulle. Tämän diplomityön tavoitteena on kartoittaa räjähdysvaarallisten tilojen standardien vaatimuksia instrumentoinnin suunnitteluun ja laitevalintoihin. Tarkemmin tarkastellaan luonnostaan vaaratonta räjähdyssuojausrakennetta, joita instrumentoinnin laitteilla tyypillisesti käytetään. Luonnostaan vaarattomassa räjähdyssuojausrakenteessa sähkölaitteen energiaa ja pintalämpötilaa rajoitetaan niin, ettei laite voi sytyttää räjähdysvaarallista seosta. Työssä perehdytään myös luonnostaan vaarattomia laitteita sisältäviin instrumentointipiireihin ja standardin niille asettamiin vaatimuksiin. Tällaisille piireille on tehtävä varmennustarkastelu, jossa todennetaan piirin täyttävän vaatimukset. Varmennusta varten diplomityön käytännönosuutena kehitetään varmennussovellus, joka suorittaa varmennuksen tietokannassa olevista arvoista.
Resumo:
The function of a complex nervous system relies on an intricate interaction between neurons and glial cells. However, as glial cells are generally born distant from the place where they settle, molecular cues are important to direct their migration. Glial cell migration is important in both normal development and disease, thus current research in the laboratory has been focused on dissecting regulatory events underlying that crucial process. With this purpose, the Drosophila eye imaginal disc has been used as a model. In response to neuronal photoreceptor differentiation, glial cells migrate from the CNS into the eye disc where they act to correctly wrap axons. To ensure proper development, attractive and repulsive signals must coordinate glial cell migration. Importantly, one of these signals is Bnl, a Fibroblast Growth Factor (FGF) ligand expressed by retinal progenitor cells that was suggested to act as a non-autonomous negative regulator of excessive glial cell migration (overmigration) by binding and activating the Btl receptor expressed by glial cells. Through the experimental results described in chapter 3 we gained a detailed insight into the function of bnl in eye disc growth, photoreceptor development, and glia migration. Interestingly, we did not find a direct correlation between the defects on the ongoing photoreceptors and the glia overmigration phenotype; however, bnl knockdown caused apoptosis of eye progenitor cells what was strongly correlated with glia migration defects. Glia overmigration due to Bnl down-regulation in eye progenitor cells was rescued by inhibiting the pro-apoptotic genes or caspases activity, as well as, by depleting JNK or Dp53 function in retinal progenitor cells. Thus, we suggest a cross-talk between those developmental signals in the control of glia migration at a distance. Importantly, these results suggest that Bnl does not control glial migration in the eye disc exclusively through its ability to bind and activate its receptor Btl in glial cells. We also discuss possible biological roles for the glia overmigration in the bnl knockdown background. Previous results in the lab showed an interaction between dMyc, a master regulator of tissue growth, and Dpp, a Transforming Growth Factor-β important for retinal patterning and for accurate glia migration into the eye disc. Thus, we became interested in understanding putative relationships between Bnl and dMyc. In chapter 4, we show that they positively cooperate in order to ensure proper development of the eye disc. This work highlights the importance of the FGF signaling in eye disc development and reveals a signaling network where a range of extra- and intra-cellular signals cooperate to non-autonomously control glial cell migration. Therefore, such inter-relations could be important in other Drosophila cellular contexts, as well as in vertebrate tissue development.
Resumo:
Feline immunodeficiency virus (FIV) is a naturally occurring lentivirus of domestic cats, which shares many similarities with its human counterpart, human immunodeficiency virus (HIV). FIV infects its main target cell, the CD4+ T lymphocyte, via interactions with its primary receptor CD134 (an activation marker expressed on activated CD4+ T lymphocytes), and, the chemokine receptor CXCR4. According to the different ways in which FIV isolates interact with CD134, FIV may be categorised into two groups. The first group contains strains that tend to dominate during the earlier phase of infection, such as GL8 and CPG41. These strains are characterized by their requirement for an additional interaction with the second cysteine rich domain (CRD2) of the CD134 molecule and are classified as “CRD2-dependent” strains. The second group, on the other hand, contains either laboratory-adapted isolates or isolates that emerge after several years of infection, such as PPR or the GL8 variants that emerged in cats 6 years post experimental infection and were studied in this thesis. These isolates are designated “CRD2-independent” as they can infect target cells without interacting with CRD2 of the CD134 molecule. This study provides the first evidence that FIV compartmentalisation is related to FIV-CD134 usage and the tissue availability of CD134+ target cells. In tissue compartments containing high levels of CD134+ cells such as peripheral blood and lymph nodes, CRD2-dependent viruses predominated, whereas CRD2-independent viruses predominated in compartments with fewer CD134+ cells, such as the thymus. The dynamics of CD4+CD134+ T lymphocytes at different stages of FIV infection were also described. The levels of CD4+CD134+ T lymphocytes, which were very high in the early phase, gradually decreased in the later phase of infection. The dynamics of CD4+CD134+ T lymphocyte numbers appeared to correlate with FIV tropism switching, as more CRD2-independent viruses were isolated from cats in the late phase of infection. Moreover, it was observed that pseudotypes bearing Envs of CRD2-dependent variants infected CD134+ target cells more efficiently than pseudotypes bearing Envs of CRD2-independent variants, confirming the selective advantage of CRD2-dependent variants in environments with high levels of CD134+ target cells. In conclusion, this study demonstrated that target cell types and numbers, as well as their dynamics, play important roles in the selection and expansion of FIV variants within the viral quasispecies. Improved understanding of the roles of target cells in FIV transmission and pathogenesis will provide important information required for the development of an improved, more successful protective FIV vaccine and will provide insight into the development of effective vaccines against other lentiviral infections such as HIV.