347 resultados para lytic phages


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In allogeneic hematopoietic stem cell transplantation (allo-HSCT), alloreactive T lymphocytes of donor origin mediate the beneficial graft-versus-leukemia effect but also induce graft-versus-host disease (GvHD). Since human leukocyte antigens (HLA) mismatch alleles represent major targets of alloreactive T lymphocytes, patient and donor are usually matched for the class I molecules A, B, C, and for the class II molecules DRB1 and DQB1, in order do reduce the risk of GvHD. The HLA-DPB1 locus, however, is still ignored in donor selection. Interestingly, clinical studies have demonstrated that disparities at HLA-DQB1 alleles as well as distinct HLA DPB1 mismatch constellations do not adversely affect the outcome of allo-HSCT. It has also been shown that HLA class II is predominantly expressed on hematopoietic cells under non-inflammatory conditions. Therefore, this PhD thesis focused on the application of CD4 T cells in adoptive immunotherapy of leukemias.rnIn the first part of this thesis we developed a rapid screening approach to detect T-cell reactivity of donors to single HLA class II mismatch alleles. Allo-HLA reactivity was measured in naive, memory, and entire CD4 T cells isolated from PBMC of healthy donors by flow cytometric cell sorting according to expression of the differentiation markers CD45RA, CD45RO, CD62L, and CCR7. T-cell populations were defined by a single marker to facilitate translation into a clinical-grade allo-depletion procedure. Alloreactivity to single HLA-DR/-DQ mismatch alleles was analyzed in short-term mixed lymphocyte reactions (MLR) in vitro. As standard antigen-presenting cells, we used the HLA-deficient cell line K562 upon electroporation with single HLA-DR/-DQ allele mRNA. We observed in IFN-γ ELISpot assays that allo-HLA-reactivity preferentially derived from subsets enriched for naive compared to memory T cells in healthy donors, irrespective of the HLA mismatch allele. This separation was most efficient if CD62L (P=0.008) or CD45RA (P=0.011) were used as marker. Median numbers of allo-HLA-reactive effector cells were 3.5-fold and 16.6-fold lower in CD62Lneg and CD45RAneg memory CD4 T cells than in entire CD4 T cells, respectively. In allele-specific analysis, alloreactivity to single HLA-DR alleles clearly exceeded that to HLA-DQ alleles. In terms of alloproliferation no significant difference could be observed between individual CD4 T-cell subsets. rnThe second part of this thesis dealed with the generation of allo-HLA-DQ/-DP specific CD4 T cells. Naive CD45RApos CD4 T cells isolated from healthy donor PBMC by flow cytometric cell sorting were stimulated in MLR against single allo-HLA-DQ/-DP alleles transfected into autologous mature monocyte-derived dendritic cells by mRNA electroporation. Rapidly expanding HLA-DQ/-DP mismatch reactive T cells significantly recognized and cytolysed primary acute myeloid leukemia (AML) blasts, fibroblasts (FB) and keratinocytes (KC) in IFN-γ ELISpot and 51chromium release assays if the targets carried the HLA DQ/ DP allele used for T cell priming. While AML blasts were recognized independent of pre-incubating them with IFN-γ, recognition of FB and KC required IFN-γ pre treatment. We further investigated HLA class II expression on hematopoietic and non-hematopoietic cells by flow cytometry. HLA class II was not detected on primary FB, KC, and non-malignant kidney cells, but was expressed at significant levels on primary AML blasts and B-LCL. Up-regulation of HLA class II expression was observed on all cell types after pre-incubation with IFN-γ.rnIn summary, the novel K562-HLA based MLR approach revealed that naive-depleted CD4 T-cell subsets of healthy individuals contain decreased allo-HLA reactivity in vitro. We propose the application of CD45RAneg naive-depleted CD4 T cells as memory T cell therapy, which might be beneficial for HLA-mismatched patients at high-risk of GvHD and low-risk of leukemia relapse. Memory T cells might also provide important post-transplant immune functions against infectious agents. Additionally, the screening approach could be employed as test system to detect donors which have low risks for the emergence of GvHD after allo-HSCT. In the second part of this thesis we developed a protocol for the generation of allo-HLA-DQ/-DP specific CD4 T cell lines, which could be applied in situations in which patient and donor are matched in all HLA alleles but one HLA-DQ/-DP allele with low GvHD potential. These T cells showed lytic activity to leukemia cells while presumably sparing non-hematopoietic tissues under non-inflammatory conditions. Therefore, they might be advantageous for allo-HSCT patients with advanced stage AML after reduced-intensity conditioning and T-cell depletion for the replenishment of anti-leukemic reactivity if the risk for disease relapse is high. rn

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Acute myeloid leukemia (AML) is a very aggressive cancer of the hematopoietic system. Chemotherapy and immunotherapeutical approaches including hematopoietic stem cell transplantation (HSCT) and donor lymphocyte infusion (DLI) are the only curative options available. The beneficial graft-versus-leukemia (GVL) effect of cellular immunotherapy is mostly mediated by donor-derived CD8+ T lymphocytes that recognize minor histocompatibility antigens (mHags) and leukemia-associated antigens (LAAs) presented on the surface of AML blasts (Falkenburg et al. 2008; Kolb 2008). A main complication is graft-versus-host disease (GVHD) that can be induced when cytotoxic T lymphocytes (CTLs) recognize broadly expressed antigens. To reduce the risk of GVHD, specific allogeneic T-cell therapy inducing selective GVL responses could be an option (Barrett & Le Blanc 2010; Parmar et al. 2011; Smits et al. 2011). This requires efficient in vitro strategies to generate AML-reactive T cells with an early differentiation phenotype as well as vigorous effector functions and humanized mouse models to analyze the anti-leukemic potential of adoptively transferred T cells in vivo. In this study, AML-reactive CTL clones and oligoclonal T-cell lines could be reliably generated from the naive subset of healthy HLA-class I-identical donors by stimulation with primary AML blasts in mini-mixed-lymphocyte / leukemia cultures (MLLCs) in eight different patient / donor pairs. These CTLs were promising candidates for cellular immunotherapy because of their relatively early differentiation phenotype and strong proliferative and lytic capabilities. The addition of the common γ-chain cytokine IL-21 to the stimulation protocol enabled more precursors to develop into potent leukemia-reactive CTLs, presumably by its beneficial effects on cell survival and antigen-specific proliferation during the first weeks of cultures. It also strengthened the early-stage phenotype. Three long-term cultured CTLs exemplarily transferred into leukemia-engrafted immunodeficient NSG mice mediated a significant reduction of the leukemic burden after a single transfusion. These results demonstrate that CTL clones with reactivity to patient-derived AML blasts can be isolated from the naive compartment of healthy donors and show potent anti-leukemic effects in vivo. The herein described allo-MLLC approach with in vitro “programmed” naive CTL precursors independent of a HSCT setting is a valuable alternative to the conventional method of isolating in vivo primed donor CTLs out of patients after transplantation (Kloosterboer et al. 2004; Warren et al. 2010). This would make leukemia-reactive CTLs already available at the time point of HSCT, when residual leukemia disease is minimal and the chances for complete leukemia eradication are high. Furthermore, leukemia-reactive CTLs effectively expanded by this in vitro protocol can be used as screening populations to identify novel candidate LAAs and mHags for antigen-specific immunotherapy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The postharvest phase has been considered an environment very suitable for successful application of biological control agents (BCAs). However, the tri-interaction between fungal pathogen, host (fruit) and antagonist is influenced by several parameters such as temperature, oxidative stresses, oxygen composition, water activity, etc. that could be determining for the success of biocontrol. Knowledge of the modes of action of BCAs is essential in order to enhance their viability and increase their potentialities in disease control. The thesis focused on the possibility to explain the modes of action of a biological control agent (BCA): Aureobasidium pullulans, in particular the strains L1 and L8, control effective against fruit postharvest fungal pathogen. In particular in this work were studied the different modes of action of BCA, such as: i) the ability to produce volatile organic compounds (VOCs), identified by SPME- gas chromatography-mass spectrometry (GC-MS) and tested by in vitro and in vivo assays against Penicillium spp., Botrytis cinerea, Colletotrichum acutatum; ii) the ability to produce lytic enzymes (exo and endo chitinase and β-1,3-glucanase) tested against Monilinia laxa, causal agent of brown rot of stone fruits. L1 and L8 lytic enzymes were also evaluated through their relative genes by molecular tools; iii) the competition for space and nutrients, such as sugars (sucrose, glucose and fructose) and iron; the latter induced the production of siderophores, molecules with high affinity for iron chelation. A molecular investigation was carried out to better understand the gene regulation strictly correlated to the production of these chelating molucules. The competition for space against M. laxa was verified by electron microscopy techniques; iv) a depth bibliographical analysis on BCAs mechanisms of action and their possible combination with physical and chemical treatments was conducted.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Acute myeloid leukaemia (AML) is a cancer of the haematopoietic system, which can in many cases only be cured by haematopoietic stem cell transplantation (HSCT) and donor lymphocyte infusion (DLI) (Burnett et al., 2011). This therapy is associated with the beneficial graft-versus-leukaemia (GvL) effect mediated by transplanted donor T and NK cells that either recognise mismatch HLA molecules or polymorphic peptides, so-called minor histocompatibility antigens, leukaemia-associated or leukaemia-specific antigens in the patient and thus eliminate remaining leukaemic blasts. Nevertheless, the mature donor-derived cells often trigger graft-versus-host disease (GvHD), leading to severe damages in patients’ epithelial tissue, mainly skin, liver and intestine (Bleakley & Riddell, 2004). Therefore, approaches for the selective mediation of strong GvL effects are needed, also in order to prevent relapse after transplantation. One promising opportunity is the in vitro generation of AML-reactive CD4+ T cells for adoptive transfer. CD4+ T cells are advantageous compared to CD8+ T cells, as HLA class II molecules are under non-inflammatory conditions only expressed on haematopoietic cells; a fact that would minimise GvHD (Klein & Sato, 2000). In this study, naive CD4+ T cells were isolated from healthy donors and were successfully stimulated against primary AML blasts in mini-mixed lymphocyte/leukaemia cell cultures (mini-MLLC) in eight patient/donor pairs. After three to seven weekly restimulations, T cells were shown to produce TH1 type cytokines and to be partially of monoclonal origin according to their TCR Vβ chain usage. Furthermore, they exhibited lytic activity towards AML blasts, which was mediated by the release of granzymes A and B and perforin. The patient/donor pairs used in this study were fully HLA-class I matched, except for one pair, and also matched for HLA-DR and -DQ, whereas -DP was mismatched in one or both alleles, reflecting the actual donor selection procedure in the clinic (Begovich et al., 1992). Antibody blocking experiments suggested that the generated CD4+ T cells were directed against the HLA-DP mismatches, which could be confirmed by the recognition of donor-derived lymphoblastoid cell lines (LCLs) electroporated with the mismatched DP alleles. Under non-inflammatory conditions primary fibroblasts did not express HLA-DP and were thus not recognised, supporting the idea of a safer application of CD4+ T cells regarding induction of GvHD. For the assessment of the biological significance of these T cells, they were adoptively transferred into NSG mice engrafted with human AML blasts, where they migrated to the bone marrow and lymphoid tissue and succeeded in eliminating the leukaemic burden after only one week. Therefore, AML-reactive CD4+ T cells expanded from the naive compartment by in vitro stimulation with primary leukaemia blasts appear to be a potent tool for DLI in HSCT patients and promise to mediate specific GvL effects without causing GvHD.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Da nicht-synonyme tumorspezifische Punktmutationen nur in malignen Geweben vorkommen und das veränderte Proteinprodukt vom Immunsystem als „fremd“ erkannt werden kann, stellen diese einen bisher ungenutzten Pool von Zielstrukturen für die Immuntherapie dar. Menschliche Tumore können individuell bis zu tausenden nicht-synonymer Punktmutationen in ihrem Genom tragen, welche nicht der zentralen Immuntoleranz unterliegen. Ziel der vorliegenden Arbeit war die Hypothese zu untersuchen, dass das Immunsystem in der Lage sein sollte, mutierte Epitope auf Tumorzellen zu erkennen und zu klären, ob auf dieser Basis eine wirksame mRNA (RNA) basierte anti-tumorale Vakzinierung etabliert werden kann. Hierzu wurde von Ugur Sahin und Kollegen, das gesamte Genom des murinen B16-F10 Melanoms sequenziert und bioinformatisch analysiert. Im Rahmen der NGS Sequenzierung wurden mehr als 500 nicht-synonyme Punktmutationen identifiziert, von welchen 50 Mutationen selektiert und durch Sanger Sequenzierung validiert wurden. rnNach der Etablierung des immunologischen Testsysteme war eine Hauptfragestellung dieser Arbeit, die selektierten nicht-synonyme Punktmutationen in einem in vivo Ansatz systematisch auf Antigenität zu testen. Für diese Studien wurden mutierte Sequenzen in einer Länge von 27 Aminosäuren genutzt, in denen die mutierte Aminosäure zentral positioniert war. Durch die Länge der Peptide können prinzipiell alle möglichen MHC Klasse-I und -II Epitope abgedeckt werden, welche die Mutation enthalten. Eine Grundidee des Projektes Ansatzes ist es, einen auf in vitro transkribierter RNA basierten oligotopen Impfstoff zu entwickeln. Daher wurden die Impfungen naiver Mäuse sowohl mit langen Peptiden, als auch in einem unabhängigen Ansatz mit peptidkodierender RNA durchgeführt. Die Immunphänotypisierung der Impfstoff induzierten T-Zellen zeigte, dass insgesamt 16 der 50 (32%) mutierten Sequenzen eine T-Zellreaktivität induzierten. rnDie Verwendung der vorhergesagten Epitope in therapeutischen Vakzinierungsstudien bestätigten die Hypothese das mutierte Neo-Epitope potente Zielstrukturen einer anti-tumoralen Impftherapie darstellen können. So wurde in therapeutischen Tumorstudien gezeigt, dass auf Basis von RNA 9 von 12 bestätigten Epitopen einen anti-tumoralen Effekt zeigte.rnÜberaschenderweise wurde bei einem MHC Klasse-II restringierten mutiertem Epitop (Mut-30) sowohl in einem subkutanen, als auch in einem unabhängigen therapeutischen Lungenmetastasen Modell ein starker anti-tumoraler Effekt auf B16-F10 beobachtet, der dieses Epitop als neues immundominantes Epitop für das B16-F10 Melanom etabliert. Um den immunologischen Mechanismus hinter diesem Effekt näher zu untersuchen wurde in verschieden Experimenten die Rolle von CD4+, CD8+ sowie NK-Zellen zu verschieden Zeitpunkten der Tumorentwicklung untersucht. Die Analyse des Tumorgewebes ergab, eine signifikante erhöhte Frequenz von NK-Zellen in den mit Mut-30 RNA vakzinierten Tieren. Das NK Zellen in der frühen Phase der Therapie eine entscheidende Rolle spielen wurde anhand von Depletionsstudien bestätigt. Daran anschließend wurde gezeigt, dass im fortgeschrittenen Tumorstadium die NK Zellen keinen weiteren relevanten Beitrag zum anti-tumoralen Effekt der RNA Vakzinierung leisten, sondern die Vakzine induzierte adaptive Immunantwort. Durch die Isolierung von Lymphozyten aus dem Tumorgewebe und deren Einsatz als Effektorzellen im IFN-γ ELISPOT wurde nachgewiesen, dass Mut-30 spezifische T-Zellen das Tumorgewebe infiltrieren und dort u.a. IFN-γ sekretieren. Dass diese spezifische IFN-γ Ausschüttung für den beobachteten antitumoralen Effekt eine zentrale Rolle einnimmt wurde unter der Verwendung von IFN-γ -/- K.O. Mäusen bestätigt.rnDas Konzept der individuellen RNA basierten mutationsspezifischen Vakzine sieht vor, nicht nur mit einem mutations-spezifischen Epitop, sondern mit mehreren RNA-kodierten Mutationen Patienten zu impfen um der Entstehung von „escape“-Mutanten entgegenzuwirken. Da es nur Erfahrung mit der Herstellung und Verabreichung von Monotop-RNA gab, also RNA die für ein Epitop kodiert, war eine wichtige Fragestellungen, inwieweit Oligotope, welche die mutierten Sequenzen sequentiell durch Linker verbunden als Fusionsprotein kodieren, Immunantworten induzieren können. Hierzu wurden Pentatope mit variierender Position des einzelnen Epitopes hinsichtlich ihrer in vivo induzierten T-Zellreaktivitäten charakterisiert. Die Experimente zeigten, dass es möglich ist, unabhängig von der Position im Pentatop eine Immunantwort gegen ein Epitop zu induzieren. Des weiteren wurde beobachtet, dass die induzierten T-Zellfrequenzen nach Pentatop Vakzinierung im Vergleich zur Nutzung von Monotopen signifikant gesteigert werden kann.rnZusammenfassend wurde im Rahmen der vorliegenden Arbeit präklinisch erstmalig nachgewiesen, dass nicht-synonyme Mutationen eine numerisch relevante Quelle von Zielstrukturen für die anti-tumorale Immuntherapie darstellen. Überraschenderweise zeigte sich eine dominante Induktion MHC-II restringierter Immunantworten, welche partiell in der Lage waren massive Tumorabstoßungsreaktionen zu induzieren. Im Sinne einer Translation der gewonnenen Erkenntnisse wurde ein RNA basiertes Oligotop-Format etabliert, welches Eingang in die klinische Testung des Konzeptes fand.rn

Relevância:

10.00% 10.00%

Publicador:

Resumo:

One of the most serious problems of the modern medicine is the growing emergence of antibiotic resistance among pathogenic bacteria. In this circumstance, different and innovative approaches for treating infections caused by multidrug-resistant bacteria are imperatively required. Bacteriophage Therapy is one among the fascinating approaches to be taken into account. This consists of the use of bacteriophages, viruses that infect bacteria, in order to defeat specific bacterial pathogens. Phage therapy is not an innovative idea, indeed, it was widely used around the world in the 1930s and 1940s, in order to treat various infection diseases, and it is still used in Eastern Europe and the former Soviet Union. Nevertheless, Western scientists mostly lost interest in further use and study of phage therapy and abandoned it after the discovery and the spread of antibiotics. The advancement of scientific knowledge of the last years, together with the encouraging results from recent animal studies using phages to treat bacterial infections, and above all the urgent need for novel and effective antimicrobials, have given a prompt for additional rigorous researches in this field. In particular, in the laboratory of synthetic biology of the department of Life Sciences at the University of Warwick, a novel approach was adopted, starting from the original concept of phage therapy, in order to study a concrete alternative to antibiotics. The innovative idea of the project consists in the development of experimental methodologies, which allow to engineer a programmable synthetic phage system using a combination of directed evolution, automation and microfluidics. The main aim is to make “the therapeutics of tomorrow individualized, specific, and self-regulated” (Jaramillo, 2015). In this context, one of the most important key points is the Bacteriophage Quantification. Therefore, in this research work, a mathematical model describing complex dynamics occurring in biological systems involving continuous growth of bacteriophages, modulated by the performance of the host organisms, was implemented as algorithms into a working software using MATLAB. The developed program is able to predict different unknown concentrations of phages much faster than the classical overnight Plaque Assay. What is more, it gives a meaning and an explanation to the obtained data, making inference about the parameter set of the model, that are representative of the bacteriophage-host interaction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract Introduction Vertebroplasty (VP) is a cost-efficient alternative to kyphoplasty; however, regarding safety and vertebral body (VB) height restoration, it is considered inferior. We assessed the safety and efficacy of VP in alleviating pain, improving quality of life (QoL) and restoring alignment. Methods In a prospective monocenter case series from May 2007 until July 2008, there were 1,408 vertebroplasties performed during 319 interventions in 306 patients with traumatic, lytic and osteoporotic fractures. The 249 interventions in 233 patients performed because of osteoporotic vertebral fractures were analyzed regarding demographics, treatment and radiographic details, pain alleviation (VAS), QoL improvement (NASS and EQ-5D), complications and predictors for new fractures requiring a reoperation. Results The osteoporotic patient sample consisted of 76.7% (179) females with a median age of 80 years. A total of 54 males had a median age of 77 years. On average, there were 1.8 VBs fractured and 5 VBs treated. The preoperative pain was assessed by the visual analog scale (VAS) and decreased from 54.9 to 40.4 pts after 2 months and 31.2 pts after 6 months. Accordingly, the QoL on the EQ-5D measure (−0.6 to 1) improved from 0.35 pts before surgery to 0.56 pts after 2 and to 0.68 pts after 6 months. The preoperative Beck Index (anterior height/posterior height) improved from a mean of 0.64 preoperative to 0.76 postoperative, remained stable at 2 months and slightly deteriorated to 0.72 at 6 months postoperatively. There were cement leakages in 26% of the fractured VBs and in 1.4% of the prophylactically cemented VBs; there were symptoms in 4.3%, and most of them were temporary hypotension and one pulmonary cement embolism that remained asymptomatic. The univariate regression model revealed a tendency for a reduced risk for new or refractures on radiographs (OR = 2.61, 95% CI 0.92–7.38, p = 0.12) and reoperations (OR = 2.9, 95% CI 0.94–8.949, p = 0.1) when prophylactic augmentation was performed. The final multivariate regression model revealed male patients to have an about three times higher refracture risk (radiographic) (OR = 2.78, p = 0.02) at 6 months after surgery. Patients with a lumbar index fracture had an about three to five times higher refracture/reoperation risk than patients with a thoracic (OR = 0.33/0.35, p = 0.009/0.01) or thoracolumbar (OR = 0.32/0.22, p = 0.099/0.01) index fracture. Conclusion If routinely used, VP is a safe and efficacious treatment option for osteoporotic vertebral fractures with regard to pain relief and improvement of the QoL. Even segmental realignment can be partially achieved with proper patient positioning. Certain patient or fracture characteristics increase the risk for early radiographic refractures or new fractures, or a reoperation; a consequent prophylactic augmentation showed protective tendencies, but the study was underpowered for a final conclusion.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background Kaposi sarcoma (KS) is the most common AIDS-defining tumour in HIV-infected individuals in Africa. Kaposi sarcoma herpes virus (KSHV) infection precedes development of KS. KSHV co-infection may be associated with worse outcomes in HIV disease and elevated KSHV viral load may be an early marker for advanced HIV disease among untreated patients. We examined the prevalence of KSHV among adults initiating antiretroviral therapy (ART) and compared immunological, demographic and clinical factors between patients seropositive and seronegative for KSHV. Results We analyzed cross-sectional data collected from 404 HIV-infected treatment-naïve adults initiating ART at the Themba Lethu Clinic, Johannesburg, South Africa between November 2008 and March 2009. Subjects were screened at ART initiation for antibodies to KSHV lytic K8.1 and latent Orf73 antigens. Seropositivity to KSHV was defined as positive to either lytic KSHV K8.1 or latent KSHV Orf73 antibodies. KSHV viremia was determined by quantitative PCR and CD3, 4 and 8 lymphocyte counts were determined with flow cytometry. Of the 404 participants, 193 (48%) tested positive for KSHV at ART initiation; with 76 (39%) reactive to lytic K8.1, 35 (18%) to latent Orf73 and 82 (42%) to both. One individual presented with clinical KS at ART initiation. The KSHV infected group was similar to those without KSHV in terms of age, race, gender, ethnicity, smoking and alcohol use. KSHV infected individuals presented with slightly higher median CD3 (817 vs. 726 cells/mm3) and CD4 (90 vs. 80 cells/mm3) counts than KSHV negative subjects. We found no associations between KSHV seropositivity and body mass index, tuberculosis status, WHO stage, HIV RNA levels, full blood count or liver function tests at initiation. Those with detectable KSHV viremia (n = 19), however, appeared to present with signs of more advanced HIV disease including anemia and WHO stage 3 or 4 defining conditions compared to those in whom the virus was undetectable. Conclusions We demonstrate a high prevalence of KSHV among HIV-infected adults initiating ART in a large urban public-sector HIV clinic. KSHV viremia but not KSHV seropositivity may be associated with markers of advanced HIV disease.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To determine the subcellular localization of the tegument proteins pp65, pp71, pp150, and pp28 as fusions to one of several fluorescent proteins. Since these tegument proteins play pivotal roles in several stages of the viral life cycle, knowledge of where and the mechanism of how these proteins localize upon release could result in a better understanding of their function during a lytic infection as well as assist in the development of an effective, novel antiviral treatment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

RTX toxins are bacterial pore-forming toxins that are particularly abundant among pathogenic species of Pasteurellaceae, in which they play a major role in virulence. RTX toxins of several primary pathogens of the family of Pasteurellaceae are directly involved in causing necrotic lesions in the target organs. Many RTX toxins are known as haemolysins because they lyse erythrocytes in vitro, an effect that is non-specific, but which serves as a useful marker in bacteriological identification and as an easily measurable signal in vitro in experimental studies. More recent studies have shown that the specific targets of most RTX toxins are leukocytes, with RTX toxins binding to the corresponding beta-subunit (CD18) of beta2 integrins and then exerting cytotoxic activity. After uptake by the target cell, at sub-lytic concentrations, some RTX toxins are transported to mitochondria and induce apoptosis. For several RTX toxins the binding to CD18 has been shown to be host specific and this seems to be the basis for the host range specificity of these RTX toxins. Observations on two very closely related species of the Pasteurellaceae family, Actinobacillus suis, a porcine pathogen particularly affecting suckling pigs, and Actinobacillus equuli subsp. haemolytica, which causes pyosepticaemia in new-born foals (sleepy foal disease), have revealed that they express different RTX toxins, named ApxI/II and Aqx, respectively. These RTX toxins are specifically cytotoxic for porcine and equine leukocytes, respectively. Furthermore, the ApxI and Aqx toxins of these species, when expressed in an isogenetic background in Escherichia coli, are specifically cytotoxic for leukocytes of their respective hosts. These data indicate the determinative role of RTX toxins in host specificity of pathogenic species of Pasteurellaceae.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Latex glycoprotein (LGP) from Synadenium grantii latex was purified by the combination of heat precipitation and gel permeation chromatography. LGP is a heat stable protein even at 80 degrees C showed a sharp single band both in SDS-PAGE as well as in native (acidic) PAGE. LGP is a monomeric protein appears as single band under reducing condition. It is a less hydrophobic protein showed sharp single peak in RP-HPLC with retention time of 13.3 m. The relative molecular mass of LGP is 34.4 kDa. CD spectrum of LGP explains less content of alpha-helix (7%), and high content of beta-pleated sheets (48%) and random coils (46%). The N-terminal sequence of LGP is D-F-P-S-D-W-Y-A-Y-E-G-Y-V-I-D-R-P-F-S. Purified LGP is a fibrinogen degrading protease hydrolyses all the three subunits in the order of Aalpha, Bbeta and gamma. The hydrolytic pattern is totally different from plasmin as well as thrombin. LGP reduces recalcification time from 165 to 30 s with citrated human plasma but did not show thrombin like as well as factor Xa-like activity. Although LGP induces procoagulant activity, it hydrolyses partially cross-linked fibrin clot. It hydrolyses all the subunits of partially cross-linked fibrin clot (alpha- chains, beta-chain and gamma-gamma dimer). LGP is a serine protease, inhibited by PMSF. Other serine protease inhibitors, aprotinin and leupeptin did not inhibit the caseinolytic activity as well as fibrinogenolytic activity. We report purification and characterization of a glycoprotein from Synadenium grantii latex with human fibrino(geno)lytic activity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The pathologic process of otosclerosis is characterized by an inflammatory lytic phase followed by an abnormal bone remodeling at very specific sites of predilection. There is a clear genetic predisposition with about half of all cases occurring in families with more than one affected member. Females are affected more frequently than males with an approximate 2:1 ratio. N, H, and F measles proteins as well as measles virus RNA have been demonstrated in osteoblasts, chondroblasts, and macrophages of the inflammatory phase of the disease. These observations merely show an association between measles viruses and otosclerosis. In the present study, we tried to prove that there is a causal relationship: voluntary measles vaccination has been available in Germany since 1974. In the absence of official data, we reconstructed the rate of vaccination coverage between 1974 and 2004 using information from the Robert Koch Institute (RKI, Berlin) and from the literature. From the German Federal Office of Statistics, we received the data of 64,112 patients who had been hospitalized between 1993 and 2004 and in whom otosclerosis (ICD-9: 387; ICD-10: H80) had been confirmed. We calculated the effect of measles vaccination on the incidence of hospital treatments for otosclerosis in the period from 1993 to 2004 in Germany. For this purpose, we divided the female and male otosclerosis patients treated as inpatients each year in the observation period into two age groups: those up to 25 years, who had in most cases been vaccinated (designated below as "vaccinated patients") and those over 25 years who mostly could not have been vaccinated (designated below as "unvaccinated patients"). We calculated the incidence of otosclerosis requiring inpatient treatment for the two age groups in each year in the period of observation. For external validation of the study results, the same analysis was carried out in all patients who received inpatient treatment for otitis media in the same period. Between 1993 and 2004 the incidence of hospital treatments for otosclerosis decreased to a significantly greater extent in the vaccinated patients than in the unvaccinated patients. The decline is much greater in men than in women. A comparable effect cannot be demonstrated in patients with otitis media. The results indicate that measles vaccination in Germany has resulted in a significant reduction in the number of hospital treatments for otosclerosis in the vaccinated age groups. We conclude that there is a causal relationship between measles viruses and the development of otosclerosis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In bacterial meningitis, several pharmacodynamic factors determine therapeutic success-when defined as sterilization of the CSF: (1) Local host defense deficits in the CNS require the use of bactericidal antibiotics to sterilize the CSF. (2) CSF antibiotic concentrations that are at least 10-fold above the MBC are necessary for maximal bactericidal activity. Protein binding, low pH, and slow bacterial growth rates are among the factors that may explain the high antibiotic concentrations necessary in vivo. (3) High CSF peak concentrations that lead to rapid bacterial killing appear more important than prolonged suprainhibitory concentrations, probably because very low residual levels in the CSF prevent bacterial regrowth, even during relatively long dosing intervals. (4) Penetration of antibiotics into the CSF is significantly impaired by the blood-brain barrier and thus, very high serum levels are necessary to achieve the CSF concentrations required for optimal bactericidal activity. Beyond these principles, recent data suggests that rapid lytic killing of bacteria in the CSF may have harmful effects on the brain because of the release of biologically active products from the lysed bacteria. Since rapid CSF sterilization remains a key therapeutic goal, the harmful consequences of bacterial lysis present a major challenge in the therapy of bacterial meningitis. Currently, dexamethasone represents that only clinically beneficial approach to reduce the harmful effects of bacterial lysis, and novel approaches are required to improve the outcome of this serious infection.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In bacterial meningitis, several pharmacodynamic factors determine therapeutic success--when defined as sterilization of the cerebrospinal fluid (CSF); (i) local host defense deficits require the use of bactericidal antibiotics; (ii) CSF antibiotic concentrations that are at least 10-fold above the MBC are necessary for maximal bactericidal activity; (iii) high CSF peak concentrations that lead to rapid bacterial killing appear more important than prolonged suprainhibitory concentrations, probably because very low residual levels in the CSF prevent bacterial regrowth even during relatively long dosing intervals; (iv) penetration of antibiotics into the CSF is significantly impaired by the blood-brain barrier, thus requiring high serum levels to achieve the CSF concentrations necessary for rapid bacterial killing. Beyond these principles, recent data suggest that rapid lytic killing of bacteria in the CSF may have harmful effects on the brain because of the release of biologically active bacterial products. The conflict between the need for rapid CSF sterilization and the harmful consequences of bacterial lysis must be addressed in the therapy of meningitis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Escherichia coli O157:H7 is a food-borne pathogen causing hemorrhagic colitis and hemolytic-uremic syndrome, especially in children. The main virulence factor responsible for the more serious disease is the Shiga toxin 2 (Stx2), which is released in the gut after oral ingestion of the organism. Although it is accepted that the amount of Stx2 produced by E. coli O157:H7 in the gut is critical for the development of disease, the eukaryotic or prokaryotic gut factors that modulate Stx2 synthesis are largely unknown. In this study, we examined the influence of prokaryotic molecules released by a complex human microbiota on Stx2 synthesis by E. coli O157:H7. Stx2 synthesis was assessed after growth of E. coli O157:H7 in cecal contents of gnotobiotic rats colonized with human microbiota or in conditioned medium having supported the growth of complex human microbiota. Extracellular prokaryotic molecules produced by the commensal microbiota repress stx(2) mRNA expression and Stx2 production by inhibiting the spontaneous and induced lytic cycle mediated by RecA. These molecules, with a molecular mass of below 3 kDa, are produced in part by Bacteroides thetaiotaomicron, a predominant species of the normal human intestinal microbiota. The microbiota-induced stx(2) repression is independent of the known quorum-sensing pathways described in E. coli O157:H7 involving SdiA, QseA, QseC, or autoinducer 3. Our findings demonstrate for the first time the regulatory activity of a soluble factor produced by the complex human digestive microbiota on a bacterial virulence factor in a physiologically relevant context.