904 resultados para liquid metal diffusion
Resumo:
The origin of the flat band voltage roll-off (V-FB roll-off) in metal gate/high-k/ultrathin-SiO2/Si metal-oxide-semiconductor stacks is analyzed and a model describing the role of the dipoles at the SiO2/Si interface on the V-FB sharp roll-off is proposed. The V-FB sharp roll-off appears when the thickness of the SiO2 interlayer diminishes to below the oxygen diffusion depth. The results derived using our model agree well with experimental data and provide insights to the mechanism of the V-FB sharp roll-off.
Resumo:
A method has been established to study the competing binding of metal ions with protein by a combined technique of microdialysis with high performance liquid chromatography (HPLC). Ni2+, Cd2+, Zn2+, Cu2+ and human serum albumin (HSA) were chosen as model metal ions and protein. The experimental results show that Ni2+ and Cu2+ share a common primary binding site on HSA, and Zn2+ and Cd2+ share a different common primary binding site from them, but there is a common multi-metal binding site for all of those four metal ions. This method show advantages of fast sampling, easily to be operated and especially to be useful when ideal spectroscopic probes are not available for the study of interaction between protein and metal ions.
Resumo:
Cu(OH)(2) nanowires have been synthesized by anodic oxidation of copper through a simple electrolysis process employing ionic liquid as an electrolyte. Controlling the electrochemical conditions can qualitatively modulate the lengths, amounts, and shapes of Cu(OH)(2) nanostructures. A rational mechanism based on coordination self-assembly and oriented attachment is proposed for the selective formation of the polycrystalline Cu(OH)(2) nanowires. In addition, the FeOOH nanoribbons, Ni(OH)(2) nanosheets, and ZnO nanospheres were also synthesized by this route, indicative of the universality of the electrochemical route presented herein. The morphologies and structures of the synthesized nanostructures have been characterized by transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM), powder X-ray diffraction (XRD). Fourier transform infrared spectra (FT-IR), and thermogravimetric (TG). (C) 2007 Elsevier Masson SAS. All rights reserved
Resumo:
Five, novel, meso-tetra[4-(3,4,5-trialkoxybenzoate)phenyl]porphyrins and their metal complexes were synthesized and their molecular structures were confirmed by H-1 NMR, FTIR spectroscopy and elemental analysis. Mesomorphic studies using DSC, polarizing optical microscope and X-ray diffraction revealed that all compounds exhibited thermotropic columnar mesophases over a wide mesophase temperature range and low liquid crystalline-crystal line transition temperature. (c) 2007 Elsevier Ltd. All rights reserved
Resumo:
We report a high molar extinction coefficient metal-free sensitizer composed of a triarylamine donor in combination with the 2-(2,2'-bithiophen-5-yl)acrylonitrile conjugation unit and cyanoacrylic acid as an acceptor. In conjugation with a volatile acetonitrile-based electrolyte or a solvent-free ionic liquid electrolyte, we have fabricated efficient dye-sensitized solar cells showing a corresponding 7.5% or 6.1% efficiency measured under the air mass 1.5 global sunlight. The ionic liquid cell exhibits excellent stability during a 1000 h accelerated test under the light-soaking and thermal dual stress. Intensity-modulated photocurrent and photovolatge spectroscopies were employed along with the transient photoelectrical decay measurements to detail the electron transport in the mesoporous titania films filled with these two electrolytes.
Resumo:
We systematically studied the temperature-dependent physicochemical properties, such as density, conductivity, and fluidity, of 1,3-dialkylimidazolium iodides. In combination with the amphiphilic Z907Na sensitizer, we have found that it is important to use low-viscosity iodide melts with small cations to achieve high-efficiency dye-sensitized solar cells. By employing high-fluidity eutectic-based melts the device efficiencies considerably increased compared to those for cells with the corresponding state of the art ionic liquid electrolytes.
Resumo:
A new kind of bismuth film modified electrode to sensitively detect trace metal ions based on incorporating highly conductive ionic liquids 1-butyl-3-methyl-imidazolium hexafluorophosphate (BMIMPF6) in solid matrices at glassy carbon (GC) was investigated. Poly(sodium 4-styrenesulfonate) (PSS), silica, and Nafion were selected as the solid matrices. The electrochemical properties of the mixed films modified GC were evaluated. The electron transfer rate of Fe(CN)(6)(4-)/Fe(CN)(6)(3-) can be effectively improved at the PSS-BMIMPF6 modified GC.
Resumo:
A kind of solvent (ionic liquid) impreganated resin (IL-SIR) was developed herein for ameliorating imidazolium-type IL-based liquid-liquid extraction of metal ions. In this study, [C(8)mim][PF6] containing Cyanex923 was immobilized on XAD-7 resin for solid-liquid extraction of rare earth (RE). The solid-liquid extraction contributed to ameliorating mass transfer efficiency, i.e. shortening equilibrium time from 40 min to 20 min, increasing extraction efficiency from 29% to 80%. In additional, the novel IL-SIR could separate Y(III) from Sc(III), Ho(III), Er(III), Yb(III) effectively by adding water-soluble complexing agent.
Resumo:
Multiwalled carbon nanotube (MWCNT)/ionic liquid/gold nanoparticle hybrid materials have been prepared by a chemical route that involves functionalization of MWCNT with amine-terminated ionic liquids followed by deposition of Au. Transmission electron microscopy revealed well-distributed Au with a narrow size distribution centered around 3.3 nm. The identity of the hybrid material was confirmed through Raman and X-ray photoelectron spectroscopy.
Resumo:
5,10,15,20-Tetra-[(p-alkoxy-m-ethyloxy)phenyl]porphyrin and [5-(p-alkoxy)phenyl-10,15,20-tri-phenyl]porphyrin and their holmium(III) complexes are reported. They display a hexagonal columnar discotic columnar Col(h)) liquid crystal phase and were studied by cyclic voltammetry, surface photovoltage spectroscopy (SPS), electric-field-induced surface photovoltage spectroscopy (EFISPS) and luminescence spectroscopy. Within the accessible potential window, all these compounds exhibit two one-electron reversible redox reactions. Quantum yields of Q band are in the region 0.0045-0.21 at room temperature. The SPS and EFISPS reveal that all the compounds are p-type semiconductors and exhibit photovoltaic response due to pi-pi* electron transitions.
Resumo:
Tetraoctyl-substituted vanadyl phthalocyanine (OVPc4C8) as a new NIR-absorbing discotic liquid crystalline material can form highly ordered thin films with edge-on alignment of the molecules and molecular packing mode identical to that in the phase II of OVPc for solution processed OTFTs with mobility up to 0.017 cm(2) V-1 s(-1).
Resumo:
A new cyclic guanidinium ionic liquid OGI (1,3-dimethyl-2-N ''-methyl-N ''-octylimidazoguanidinium iodide) has been used as a quasi-solid-state electrolyte for dye-sensitized solar cells (DSCs), and 6.38% conversion efficiency was achieved at AM 1.5 simulated sunlight (9.81 mW cm(-2)). Further gelation with SiO2 nanoparticles afforded the solid-state electrolyte, which presented overall conversion efficiency of 5.85%. The diffusion properties of these OGI-based electrolytes were investigated. In the meantime, the optimal structure and ion-pairing interaction in OGI have been proposed by density functional theoretical calculation (DFT) at the B3LYP/6-21G(d,p) level.
Resumo:
A series of novel, long-chain-substituted, porphyrin derivatives, meso-tetra (4-alkylamidophenyl) porphyrin ligands and their Zn complexes (alkyl = 8,10,12,14,16,18) were prepared by acylation of the amino groups of 5,10,15,20-tetra(4-aminophenyl)porphyrin by alkyl chloride. Mesomorphism was investigated by DSC, polarized optical microscopy (POM) and X-ray diffraction (XRD). Only ligands containing chains > 12 carbon atoms displayed liquid crystalline behaviour, which exhibited a high phase transition temperature and a broad mesophase temperature span, Zn complexes showed no liquid crystalline behaviour. Cyclic voltammetry, luminescence spectra and surface photovoltage spectroscopy revealed that covalent linking of an alkylamido group to the tetraphenylporphyrin molecule influences, significantly, the properties of the porphyrin macrocycle.
Resumo:
The electrochemiluminescence (ECL) of tris(2,29-bipyridyl) ruthenium(II) [Ru(bpy)(3)(2+)] ion-exchanged in the sulfonic-functionalized MCM-41 silicas was developed with tripropylamine (TPrA) as a co-reactant in a carbon paste electrode (CPE) using a room temperature ionic liquid (IL) as a binder. The sulfonic-functionalized silicas MCM-41 were used for preparing an ECL sensor by the electrostatic interactions between Ru( bpy)(3)(2+) cations and sulfonic acid groups. We used the IL as a binder to construct the CPE (IL-CPE) to replace the traditional binder of the CPE (T-CPE)-silicone oil. The results indicated that the MCM-41-modified IL-CPE had more open structures to allow faster diffusion of Ru( bpy)(3)(2+) and that the ionic liquid also acted as a conducting bridge to connect TPrA with Ru( bpy)(3)(2+) sites immobilized in the electrode, resulting in a higher ECL intensity compared with the MCM-41-modified T-CPE. Herein, the detection limit for TPrA of the MCM-41-modified IL-CPE was 7.2 nM, which was two orders of magnitude lower than that observed at the T-CPE. When this new sensor was used in flow injection analysis (FIA), the MCM-41-modified IL-CPE ECL sensor also showed good reproducibility. Furthermore, the sensor could also be renewed easily by mechanical polishing whenever needed.
Resumo:
A new material (IL923SGs) composed of ionic liquids and trialkyl phosphine oxides (Cyanex 923) for Y(III) uptake was prepared via a sol-gel method. The hydrophobic ionic liquid 1-octyl-3-methylimidazolium hexafluorophosphate (C(8)mim(+)PF(6)-) was used as solvent medium and pore templating material. The extraction of Y(III) by IL923SGs was mainly due to the complexation of metal ions with Cyanex 923 doped in the solid silica. Ionic liquid was stably doped into the silica gel matrix providing a diffusion medium for Cyanex 923, and this will result in higher removal efficiencies and excellent stability for metal ions separation. IL923SGs were also easily regenerated and reused in the subsequent removal of Y(III) in four cycles.