858 resultados para laser-acceleration. high intensity lasers, radiation-pressure acceleration
Resumo:
The phenomenon post activation potentiation (PAP) can be defined as an increase in muscle performance following a heavy contraction of a movement that utilizes the same muscle group (i.e. improved 20m sprint following a high intensity squat). However, research has yet to examine if heavy squats elicit PAP on the squat itself. Further, past studies have not yet analyzed if PAP is elicited at a moderate intensity (i.e. 60% one-repetition maximum-1RM).
Resumo:
The purpose of this study was to quantify the metabolic equivalents (METs) of resistance exercise in obese patients with type 2 diabetes (T2DM) and healthy young subjects and to evaluate whether there were differences between sessions executed at low- versus high-intensity resistance exercise. Twenty obese patients with T2DM (62.9±6.1 years) and 22 young subjects (22.6±1.9 years) performed two training sessions: one at vigorous intensity (80% of 1-repetition maximum (1RM)) and one at moderate intensity (60% of 1RM). Both groups carried out three strength exercises with a 2-day recovery between sessions. Oxygen consumption was continuously measured 15 min before, during and after each training session. Obese T2DM patients showed lower METs values compared with young healthy participants at the baseline phase (F= 2043.86; P<0.01), during training (F=1140.59; P<0.01) and in the post-exercise phase (F=1012.71; P<0.01). No effects were detected in the group x intensity analysis of covariance. In this study, at both light-moderate and vigorous resistance exercise intensities, the METs value that best represented both sessions was 3 METs for the obese elderly T2DM patients and 5 METs for young subjects.
Resumo:
The advent of high intensity lasers coupled with the recent advances in crystal technology has led to rapid progress in the field of nonlinear optics. This article traces the history of materials development that has taken place over the past forty odd years and dwells on the current status in this important area. The materials aspect is discussed under three classes viz. inorganic, organic and semiorganic crystals. In the end, some of the crystal growth work that has been carried out in author's laboratory is presented.
Resumo:
The oxidation of glucose is a complex process usually requiring catalytically active electrode surfaces or enzyme modified electrodes. In this study the effect of high intensity microwave radiation on the oxidation of glucose in alkaline solution at Au, Cu, and Ni electrodes is reported. Calibration experiments with the Fe(CN)(6)(3-/4-) redox system in aqueous 0.1 M NaOH indicate that strong thermal effects occur at both 50 and 500 mu m diameter electrodes with temperatures reaching 380 K. Extreme mass transport effects with mass transport coefficients of k(mt) > 0.01 m s(-1) (or k(mt) > 1.0 cm s(-1)) are observed at 50 mu m diameter electrodes in the presence of microwaves. The electrocatalytic oxidation of glucose at 500 mu m diameter Au, Cu, or Ni electrodes immersed in 0.1 M NaOH and in the presence of microwave radiation is shown to be dominated by kinetic control. The magnitude of glucose oxidation currents at Cu electrodes is shown to depend on the thickness of a pre-formed oxide layer. At 50 mu m diameter Au, Cu, or Ni electrodes microwave enhanced current densities are generally higher, but only at Au electrodes is a significantly increased rate for the electrocatalytic oxidation of glucose to gluconolactone observed. This rate enhancement appears to be independent of temperature but microwave intensity dependent, and therefore non-thermal in nature. Voltammetric currents observed at Ni electrodes in the presence of microwaves show the best correlation with glucose concentration and are therefore analytically most useful.
Resumo:
The oxidation of glucose is a complex process usually requiring catalytically active electrode surfaces or enzyme-modified electrodes. In this study the effect of high intensity microwave radiation on the oxidation of glucose in alkaline solution at Au, Cu, and Ni electrodes is reported. Calibration experiments with the Fe(CN)63–/4– redox system in aqueous 0.1 M NaOH indicate that strong thermal effects occur at both 50 and 500 µm diameter electrodes with temperatures reaching 380 K. Extreme mass transport effects with mass transport coefficients of kmt > 0.01 m s–1(or kmt > 1.0 cm s–1) are observed at 50 µm diameter electrodes in the presence of microwaves. The electrocatalytic oxidation of glucose at 500 µm diameter Au, Cu, or Ni electrodes immersed in 0.1 M NaOH and in the presence of microwave radiation is shown to be dominated by kinetic control. The magnitude of glucose oxidation currents at Cu electrodes is shown to depend on the thickness of a pre-formed oxide layer. At 50 µm diameter Au, Cu, or Ni electrodes microwave enhanced current densities are generally higher, but only at Au electrodes is a significantly increased rate for the electrocatalytic oxidation of glucose to gluconolactone observed. This rate enhancement appears to be independent of temperature but microwave intensity dependent, and therefore non-thermal in nature. Voltammetric currents observed at Ni electrodes in the presence of microwaves show the best correlation with glucose concentration and are therefore analytically most useful.
Resumo:
Pós-graduação em Engenharia e Ciência de Alimentos - IBILCE
Resumo:
Pós-graduação em Biopatologia Bucal - ICT
Resumo:
A stable relativistic ion acceleration regime for thin foils irradiated by circularly polarized laser pulses is suggested. In this regime, the "light-sail" stage of radiation pressure acceleration for ions is smoothly connected with the initial relativistic "hole-boring" stage, and a defined relationship between laser intensity I(0), foil density n(0), and thickness l(0) should be satisfied. For foils with a wide range of n(0), the required I(0) and l(0) for the regime are theoretically estimated and verified with the particle-in-cell code ILLUMINATION. It is shown for the first time by 2D simulations that high-density monoenergetic ion beams with energy above GeV/u and divergence of 10 degrees are produced by circularly polarized lasers at intensities of 10(22) W/cm(2), which are within reach of current laser systems.
Resumo:
In recent experiments at the Trident laser facility, quasi-monoenergetic ion beams have been obtained from the interaction of an ultraintense, circularly polarized laser with a diamond-like carbon target of nm-scale thickness under conditions of ultrahigh laser pulse contrast. Kinetic simulations of this experiment under realistic laser and plasma conditions show that relativistic transparency occurs before significant radiation pressure acceleration and that the main ion acceleration occurs after the onset of relativistic transparency. Associated with this transition are a period of intense ion acceleration and the generation of a new class of ion solitons that naturally give rise to quasi-monoenergetic ion beams. An analytic theory has been derived for the properties of these solitons that reproduces the behavior observed in kinetic simulations and the experiments. © 2011 American Institute of Physics.
Resumo:
The problem of the 'hole-boring' (HB)-type of radiation pressure acceleration of ions by circularly polarized laser pulses interacting with overdense plasmas is considered in the regime where the dimensionless scaling parameter I/rho c(3) becomes large. In this regime a non-relativistic treatment of the 'HB' problem is no longer adequate. A new set of fully relativistic formulae for the mean ion energy and 'HB' velocity is derived and validated against one-dimensional particle-in-cell simulations. It is also found that the finite acceleration time of the ions results in large energy spreads in the accelerated ion beam even under the highly idealized conditions of constant laser intensity and uniform mass density.
Resumo:
The possibility of using high-power lasers to generate high-quality beams of energetic ions is attracting large global interest. The prospect of using laser-accelerated protons in medicine attracts particular interest, as these schemes may lead to compact and relatively low-cost sources. Among the challenges remaining before these sources can be used in medicine is to increase the numbers and energies of the ions accelerated. Here, we extend the energy and intensity range over which proton scaling is experimentally investigated, up to 400 J and 6 x 10(20) W cm(-2) respectively, and find a slower proton scaling than previously predicted. With the aid of plasma-expansion simulation tools, our results suggest the importance of time-dependent and multidimensional effects in predicting the maximum proton energy in this ultrahigh-intensity regime. The implications of our new understanding of proton scaling for potential medical applications are discussed.
Proton acceleration enhanced by a plasma jet in expanding foils undergoing relativistic transparency
Resumo:
Ion acceleration driven by the interaction of an ultraintense (2 × 1020 W cm-2) laser pulse with an ultrathin ( nm) foil target is experimentally and numerically investigated. Protons accelerated by sheath fields and via laser radiation pressure are angularly separated and identified based on their directionality and signature features (e.g. transverse instabilities) in the measured spatial-intensity distribution. A low divergence, high energy proton component is also detected when the heated target electrons expand and the target becomes relativistically transparent during the interaction. 2D and 3D particle-in-cell simulations indicate that under these conditions a plasma jet is formed at the target rear, supported by a self-generated azimuthal magnetic field, which extends into the expanded layer of sheath-accelerated protons. Electrons trapped within this jet are directly accelerated to super-thermal energies by the portion of the laser pulse transmitted through the target. The resulting streaming of the electrons into the ion layers enhances the energy of protons in the vicinity of the jet. Through the addition of a controlled prepulse, the maximum energy of these protons is demonstrated experimentally and numerically to be sensitive to the picosecond rising edge profile of the laser pulse.
Resumo:
Multiple ion acceleration mechanisms can occur when an ultrathin foil is irradiated with an intense laser pulse, with the dominant mechanism changing over the course of the interaction. Measurement of the spatial-intensity distribution of the beam of energetic protons is used to investigate the transition from radiation pressure acceleration to transparency-driven processes. It is shown numerically that radiation pressure drives an increased expansion of the target ions within the spatial extent of the laser focal spot, which induces a radial deflection of relatively low energy sheath-accelerated protons to form an annular distribution. Through variation of the target foil thickness, the opening angle of the ring is shown to be correlated to the point in time transparency occurs during the interaction and is maximized when it occurs at the peak of the laser intensity profile. Corresponding experimental measurements of the ring size variation with target thickness exhibit the same trends and provide insight into the intra-pulse laser-plasma evolution.
Resumo:
Control of the collective response of plasma particles to intense laser light is intrinsic to relativistic optics, the development of compact laser-driven particle and radiation sources, as well as investigations of some laboratory astrophysics phenomena. We recently demonstrated that a relativistic plasma aperture produced in an ultra-thin foil at the focus of intense laser radiation can induce diffraction, enabling polarization-based control of the collective motion of plasma electrons. Here we show that under these conditions the electron dynamics are mapped into the beam of protons accelerated via strong charge-separation-induced electrostatic fields. It is demonstrated experimentally and numerically via 3D particle-in-cell simulations that the degree of ellipticity of the laser polarization strongly influences the spatial-intensity distribution of the beam of multi-MeV protons. The influence on both sheath-accelerated and radiation pressure-accelerated protons is investigated. This approach opens up a potential new route to control laser-driven ion sources.
Resumo:
Particle-in-cell simulations are performed to study the acceleration of ions due to the interaction of a relativistic femtosecond laser pulse with a narrow thin target. The numerical results show that ions can be accelerated in a cascade by two electrostatic fields if the width of the target is smaller than the laser beam waist. The first field is formed in front of the target by the central part of the laser beam, which pushes the electron layer inward. The major part of the abaxial laser energy propagates along the edges to the rear side of the target and pulls out some hot electrons from the edges of the target, which form another electrostatic field at the rear side of the target. The ions from the front surface are accelerated stepwise by these two electrostatic fields to high energies at the rear side of the target. The simulations show that the largest ion energy gain for a narrow target is about four times higher than in the case of a wide target. (c) 2006 American Institute of Physics.