949 resultados para inverse problem
Resumo:
We consider a Cauchy problem for the Laplace equation in a two-dimensional semi-infinite region with a bounded inclusion, i.e. the region is the intersection between a half-plane and the exterior of a bounded closed curve contained in the half-plane. The Cauchy data are given on the unbounded part of the boundary of the region and the aim is to construct the solution on the boundary of the inclusion. In 1989, Kozlov and Maz'ya [10] proposed an alternating iterative method for solving Cauchy problems for general strongly elliptic and formally self-adjoint systems in bounded domains. We extend their approach to our setting and in each iteration step mixed boundary value problems for the Laplace equation in the semi-infinite region are solved. Well-posedness of these mixed problems are investigated and convergence of the alternating procedure is examined. For the numerical implementation an efficient boundary integral equation method is proposed, based on the indirect variant of the boundary integral equation approach. The mixed problems are reduced to integral equations over the (bounded) boundary of the inclusion. Numerical examples are included showing the feasibility of the proposed method.
Resumo:
The evaluation from experimental data, of physical quantities, which enter into the electromagnetic Maxwell equations, is described as inverse optical problem. The functional relations between the dependent and independent variables are of transcendental character and numeric procedures for evaluation of the unknowns are largely used. Herein, we discuss a direct approach to the solution, illustrated by a specific example of determination of thin films optical constants from spectrophotometric data. New algorithm is proposed for the parameters evaluation, which does not need an initial guess of the unknowns and does not use iterative procedures. Thus we overcome the intrinsic deficiency of minimization techniques, such as gradient search methods, Simplex methods, etc. The price of it is a need of more computing power, but our algorithm is easily implemented in structures such as grid clusters. We show the advantages of this approach and its potential for generalization to other inverse optical problems.
Resumo:
Иван Димовски, Юлиан Цанков - В статията е намерено точно решение на задачата на Бицадзе-Самрски (1) за уравнението на Лаплас, като е използвано операционно смятане основано на некласическа двумернa конволюция. На това точно решение може да се гледа като начин за сумиране на нехармоничния ред по синуси на решението, получен по метода на Фурие.
Resumo:
MSC 2010: 35J05, 33C10, 45D05
Resumo:
2000 Mathematics Subject Classification: 62E16,62F15, 62H12, 62M20.
Resumo:
A numerical method based on integral equations is proposed and investigated for the Cauchy problem for the Laplace equation in 3-dimensional smooth bounded doubly connected domains. To numerically reconstruct a harmonic function from knowledge of the function and its normal derivative on the outer of two closed boundary surfaces, the harmonic function is represented as a single-layer potential. Matching this representation against the given data, a system of boundary integral equations is obtained to be solved for two unknown densities. This system is rewritten over the unit sphere under the assumption that each of the two boundary surfaces can be mapped smoothly and one-to-one to the unit sphere. For the discretization of this system, Weinert’s method (PhD, Göttingen, 1990) is employed, which generates a Galerkin type procedure for the numerical solution, and the densities in the system of integral equations are expressed in terms of spherical harmonics. Tikhonov regularization is incorporated, and numerical results are included showing the efficiency of the proposed procedure.
Resumo:
The existence of an inverse limit of an inverse system of (probability) measure spaces has been investigated since the very beginning of the birth of the modern probability theory. Results from Kolmogorov [10], Bochner [2], Choksi [5], Metivier [14], Bourbaki [3] among others have paved the way of the deep understanding of the problem under consideration. All the above results, however, call for some topological concepts, or at least ones which are closely related topological ones. In this paper we investigate purely measurable inverse systems of (probability) measure spaces, and give a sucient condition for the existence of a unique inverse limit. An example for the considered purely measurable inverse systems of (probability) measure spaces is also given.
Resumo:
Inverse simulations of musculoskeletal models computes the internal forces such as muscle and joint reaction forces, which are hard to measure, using the more easily measured motion and external forces as input data. Because of the difficulties of measuring muscle forces and joint reactions, simulations are hard to validate. One way of reducing errors for the simulations is to ensure that the mathematical problem is well-posed. This paper presents a study of regularity aspects for an inverse simulation method, often called forward dynamics or dynamical optimization, that takes into account both measurement errors and muscle dynamics. The simulation method is explained in detail. Regularity is examined for a test problem around the optimum using the approximated quadratic problem. The results shows improved rank by including a regularization term in the objective that handles the mechanical over-determinancy. Using the 3-element Hill muscle model the chosen regularization term is the norm of the activation. To make the problem full-rank only the excitation bounds should be included in the constraints. However, this results in small negative values of the activation which indicates that muscles are pushing and not pulling. Despite this unrealistic behavior the error maybe small enough to be accepted for specific applications. These results is a starting point start for achieving better results of inverse musculoskeletal simulations from a numerical point of view.
Resumo:
This thesis deals with tensor completion for the solution of multidimensional inverse problems. We study the problem of reconstructing an approximately low rank tensor from a small number of noisy linear measurements. New recovery guarantees, numerical algorithms, non-uniform sampling strategies, and parameter selection algorithms are developed. We derive a fixed point continuation algorithm for tensor completion and prove its convergence. A restricted isometry property (RIP) based tensor recovery guarantee is proved. Probabilistic recovery guarantees are obtained for sub-Gaussian measurement operators and for measurements obtained by non-uniform sampling from a Parseval tight frame. We show how tensor completion can be used to solve multidimensional inverse problems arising in NMR relaxometry. Algorithms are developed for regularization parameter selection, including accelerated k-fold cross-validation and generalized cross-validation. These methods are validated on experimental and simulated data. We also derive condition number estimates for nonnegative least squares problems. Tensor recovery promises to significantly accelerate N-dimensional NMR relaxometry and related experiments, enabling previously impractical experiments. Our methods could also be applied to other inverse problems arising in machine learning, image processing, signal processing, computer vision, and other fields.
Resumo:
Protective relaying comprehends several procedures and techniques focused on maintaining the power system working safely during and after undesired and abnormal network conditions, mostly caused by faulty events. Overcurrent relay is one of the oldest protective relays, its operation principle is straightforward: when the measured current is greater than a specified magnitude the protection trips; less variables are required from the system in comparison with other protections, causing the overcurrent relay to be the simplest and also the most difficult protection to coordinate; its simplicity is reflected in low implementation, operation, and maintenance cost. The counterpart consists in the increased tripping times offered by this kind of relays mostly before faults located far from their location; this problem can be particularly accentuated when standardized inverse-time curves are used or when only maximum faults are considered to carry out relay coordination. These limitations have caused overcurrent relay to be slowly relegated and replaced by more sophisticated protection principles, it is still widely applied in subtransmission, distribution, and industrial systems. In this work, the use of non standardized inverse-time curves, the model and implementation of optimization algorithms capable to carry out the coordination process, the use of different levels of short circuit currents, and the inclusion of distance relays to replace insensitive overcurrent ones are proposed methodologies focused on the overcurrent relay performance improvement. These techniques may transform the typical overcurrent relay into a more sophisticated one without changing its fundamental principles and advantages. Consequently a more secure and still economical alternative can be obtained, increasing its implementation area
Resumo:
We consider the Cauchy problem for the Laplace equation in 3-dimensional doubly-connected domains, that is the reconstruction of a harmonic function from knowledge of the function values and normal derivative on the outer of two closed boundary surfaces. We employ the alternating iterative method, which is a regularizing procedure for the stable determination of the solution. In each iteration step, mixed boundary value problems are solved. The solution to each mixed problem is represented as a sum of two single-layer potentials giving two unknown densities (one for each of the two boundary surfaces) to determine; matching the given boundary data gives a system of boundary integral equations to be solved for the densities. For the discretisation, Weinert's method [24] is employed, which generates a Galerkin-type procedure for the numerical solution via rewriting the boundary integrals over the unit sphere and expanding the densities in terms of spherical harmonics. Numerical results are included as well.