940 resultados para interactivity and 3D relational maps
Resumo:
Cemented carbide is today the most frequently used drawing die material in steel wire drawing applications. This is mainly due to the possibility to obtain a broad combination of hardness and toughness thus meeting the requirements concerning strength, crack resistance and wear resistance set by the wire drawing process. However, the increasing cost of cemented carbide in combination with the possibility to increase the wear resistance of steel through the deposition of wear resistant CVD and PVD coatings have enhanced the interest to replace cemented carbide drawing dies with CVD and PVD coated steel wire drawing dies. In the present study, the possibility to replace cemented carbide wire drawing dies with CVD and PVD coated steel drawing dies have been investigated by tribological characterisation, i.e. pin-on-disc and scratch testing, in combination with post-test observations of the tribo surfaces using scanning electron microscopy, energy dispersive X-ray spectroscopy and 3D surface profilometry. Based on the results obtained, CVD and PVD coatings aimed to provide improved tribological performance of steel wire drawing dies should display a smooth surface topography, a high wear resistance, a high fracture toughness (i.e. a high cracking and chipping resistance) and intrinsic low friction properties in contact with the wire material. Also, the steel substrate used must display a sufficient load carrying capacity and resistance to thermal softening. Of the CVD and PVD coatings evaluated in the tribological tests, a CVD TiC and a PVD CrC/C coating displayed the most promising results.
Resumo:
A visualização de conjuntos de dados volumétricos é comum em diversas áreas de aplicação e há já alguns anos os diversos aspectos envolvidos nessas técnicas vêm sendo pesquisados. No entanto, apesar dos avanços das técnicas de visualização de volumes, a interação com grandes volumes de dados ainda apresenta desafios devido a questões de percepção (ou isolamento) de estruturas internas e desempenho computacional. O suporte do hardware gráfico para visualização baseada em texturas permite o desenvolvimento de técnicas eficientes de rendering que podem ser combinadas com ferramentas de recorte interativas para possibilitar a inspeção de conjuntos de dados tridimensionais. Muitos estudos abordam a otimização do desempenho de ferramentas de recorte, mas muito poucos tratam das metáforas de interação utilizadas por essas ferramentas. O objetivo deste trabalho é desenvolver ferramentas interativas, intuitivas e fáceis de usar para o recorte de imagens volumétricas. Inicialmente, é apresentado um estudo sobre as principais técnicas de visualização direta de volumes e como é feita a exploração desses volumes utilizando-se recorte volumétrico. Nesse estudo é identificada a solução que melhor se enquadra no presente trabalho para garantir a interatividade necessária. Após, são apresentadas diversas técnicas de interação existentes, suas metáforas e taxonomias, para determinar as possíveis técnicas de interação mais fáceis de serem utilizadas por ferramentas de recorte. A partir desse embasamento, este trabalho apresenta o desenvolvimento de três ferramentas de recorte genéricas implementadas usando-se duas metáforas de interação distintas que são freqüentemente utilizadas por usuários de aplicativos 3D: apontador virtual e mão virtual. A taxa de interação dessas ferramentas é obtida através de programas de fragmentos especiais executados diretamente no hardware gráfico. Estes programas especificam regiões dentro do volume a serem descartadas durante o rendering, com base em predicados geométricos. Primeiramente, o desempenho, precisão e preferência (por parte dos usuários) das ferramentas de recorte volumétrico são avaliados para comparar as metáforas de interação empregadas. Após, é avaliada a interação utilizando-se diferentes dispositivos de entrada para a manipulação do volume e ferramentas. A utilização das duas mãos ao mesmo tempo para essa manipulação também é testada. Os resultados destes experimentos de avaliação são apresentados e discutidos.
Resumo:
Image stitching is the process of joining several images to obtain a bigger view of a scene. It is used, for example, in tourism to transmit to the viewer the sensation of being in another place. I am presenting an inexpensive solution for automatic real time video and image stitching with two web cameras as the video/image sources. The proposed solution relies on the usage of several markers in the scene as reference points for the stitching algorithm. The implemented algorithm is divided in four main steps, the marker detection, camera pose determination (in reference to the markers), video/image size and 3d transformation, and image translation. Wii remote controllers are used to support several steps in the process. The built‐in IR camera provides clean marker detection, which facilitates the camera pose determination. The only restriction in the algorithm is that markers have to be in the field of view when capturing the scene. Several tests where made to evaluate the final algorithm. The algorithm is able to perform video stitching with a frame rate between 8 and 13 fps. The joining of the two videos/images is good with minor misalignments in objects at the same depth of the marker,misalignments in the background and foreground are bigger. The capture process is simple enough so anyone can perform a stitching with a very short explanation. Although real‐time video stitching can be achieved by this affordable approach, there are few shortcomings in current version. For example, contrast inconsistency along the stitching line could be reduced by applying a color correction algorithm to every source videos. In addition, the misalignments in stitched images due to camera lens distortion could be eased by optical correction algorithm. The work was developed in Apple’s Quartz Composer, a visual programming environment. A library of extended functions was developed using Xcode tools also from Apple.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The stretch zone width (SZW) data for 15-5PH steel CTOD specimens fractured at -150 degrees C to + 23 degrees C temperature were measured based on focused images and 3D maps obtained by extended depth-of-field reconstruction from light microscopy (LM) image stacks. This LM-based method, with a larger lateral resolution, seems to be as effective for quantitative analysis of SZW as scanning electron microscopy (SEM) or confocal scanning laser microscopy (CSLM), permitting to clearly identify stretch zone boundaries. Despite the worst sharpness of focused images, a robust linear correlation was established to fracture toughness (KC) and SZW data for the 15-5PH steel tested specimens, measured at their center region. The method is an alternative to evaluate the boundaries of stretched zones, at a lower cost of implementation and training, since topographic data from elevation maps can be associated with reconstructed image, which summarizes the original contrast and brightness information. Finally, the extended depth-of-field method is presented here as a valuable tool for failure analysis, as a cheaper alternative to investigate rough surfaces or fracture, compared to scanning electron or confocal light microscopes. Microsc. Res. Tech. 75:11551158, 2012. (C) 2012 Wiley Periodicals, Inc.
Resumo:
In this paper we present the methodological procedures involved in the digital imaging in mesoscale of a block of travertines rock of quaternary age, originating from the city of Acquasanta, located in the Apennines, Italy. This rocky block, called T-Block, was stored in the courtyard of the Laboratório Experimental Petróleo "Kelsen Valente" (LabPetro), of Universidade Estadual de Campinas (UNICAMP), so that from it were performed Scientific studies, mainly for research groups universities and research centers working in brazilian areas of reservoir characterization and 3D digital imaging. The purpose of this work is the development of a Model Solid Digital, from the use of non-invasive techniques of digital 3D imaging of internal and external surfaces of the T-Block. For the imaging of the external surfaces technology has been used LIDAR (Light Detection and Range) and the imaging surface Interior was done using Ground Penetrating Radar (GPR), moreover, profiles were obtained with a Gamma Ray Gamae-spectômetro laptop. The goal of 3D digital imaging involved the identification and parameterization of surface geological and sedimentary facies that could represent heterogeneities depositional mesoscale, based on study of a block rocky with dimensions of approximately 1.60 m x 1.60 m x 2.70 m. The data acquired by means of terrestrial laser scanner made available georeferenced spatial information of the surface of the block (X, Y, Z), and varying the intensity values of the return laser beam and high resolution RGB data (3 mm x 3 mm), total points acquired 28,505,106. This information was used as an aid in the interpretation of radargrams and are ready to be displayed in rooms virtual reality. With the GPR was obtained 15 profiles of 2.3 m and 2 3D grids, each with 24 sections horizontal of 1.3 and 14 m vertical sections of 2.3 m, both the Antenna 900 MHz to about 2600 MHz antenna. Finally, the use of GPR associated with Laser Scanner enabled the identification and 3D mapping of 3 different radarfácies which were correlated with three sedimentary facies as had been defined at the outset. The 6 profiles showed gamma a low amplitude variation in the values of radioactivity. This is likely due to the fact of the sedimentary layers profiled have the same mineralogical composition, being composed by carbonate sediments, with no clay in siliciclastic pellitic layers or other mineral carrier elements radioactive
Resumo:
The Camorim Oilfield, discovered in 1970 in the shallow water domain of the Sergipe Sub-basin, produces hydrocarbons from the Carmópolis Member of the Muribeca Formation, the main reservoir interval, interpreted as siliciclastics deposited in an alluvial-fluvial-deltaic context during a late rifting phase of Neoaptian age, in the Sergipe-Alagoas Basin. The structural setting of the field defines different production blocks, being associated to the evolution of the Atalaia High during the rift stage and subsequent reactivations, encompassing NE-SW trending major normal faults and NWEW trending secondary faults. The complexity of this field is related to the strong facies variation due to the interaction between continental and coastal depositional environments, coupled with strata juxtaposition along fault blocks. This study aims to geologically characterize its reservoirs, to provide new insights to well drilling locations in order to increase the recovery factor of the field. Facies analysis based on drill cores and geophysical logs and the 3D interpretation of a seismic volume, provide a high resolution stratigraphic analysis approach to be applied in this geodynamic transitional context between the rift and drift evolutionary stages of the basin. The objective was to define spatial and time relations between production zones and the preferential directions of fluid flow, using isochore maps that represent the external geometry of the deposits and facies distribution maps to characterize the internal heterogeneities of these intervals, identified in a 4th order stratigraphic zoning. This work methodology, integrated in a 3D geological modelling process, will help to optimize well drilling and hydrocarbons production. This methodology may be applied in other reservoirs in tectonic and depositional contexts similar to the one observed at Camorim, for example, the oil fields in the Aracaju High, Sergipe Sub-basin, which together represent the largest volume of oil in place in onshore Brazilian basins
Resumo:
Purpose: The aim of this study was to assess the influence of cusp inclination on stress distribution in implant-supported prostheses by 3D finite element method.Materials and Methods: Three-dimensional models were created to simulate a mandibular bone section with an implant (3.75 mm diameter x 10 mm length) and crown by means of a 3D scanner and 3D CAD software. A screw-retained single crown was simulated using three cusp inclinations (10 degrees, 20 degrees, 30 degrees). The 3D models (model 10d, model 20d, and model 30d) were transferred to the finite element program NeiNastran 9.0 to generate a mesh and perform the stress analysis. An oblique load of 200 N was applied on the internal vestibular face of the metal ceramic crown.Results: The results were visualized by means of von Mises stress maps. Maximum stress concentration was located at the point of application. The implant showed higher stress values in model 30d (160.68 MPa). Cortical bone showed higher stress values in model 10d (28.23 MPa).Conclusion: Stresses on the implant and implant/abutment interface increased with increasing cusp inclination, and stresses on the cortical bone decreased with increasing cusp inclination.
Resumo:
Spatial analysis and fuzzy classification techniques were used to estimate the spatial distributions of heavy metals in soil. The work was applied to soils in a coastal region that is characterized by intense urban occupation and large numbers of different industries. Concentrations of heavy metals were determined using geostatistical techniques and classes of risk were defined using fuzzy classification. The resulting prediction mappings identify the locations of high concentrations of Pb, Zn, Ni, and Cu in topsoils of the study area. The maps show that areas of high pollution of Ni and Cu are located at the northeast, where there is a predominance of industrial and agricultural activities; Pb and Zn also occur in high concentrations in the northeast, but the maps also show significant concentrations of Pb and Zn in other areas, mainly in the central and southeastern parts, where there are urban leisure activities and trade centers. Maps were also prepared showing levels of pollution risk. These maps show that (1) Cu presents a large pollution risk in the north-northwest, midwest, and southeast sectors, (2) Pb represents a moderate risk in most areas, (3) Zn generally exhibits low risk, and (4) Ni represents either low risk or no risk in the studied area. This study shows that combining geostatistics with fuzzy theory can provide results that offer insight into risk assessment for environmental pollution.
Resumo:
Este trabalho mostra os resultados obtidos com ensaios geofísicos realizados em uma área contaminada por hidrocarboneto no Polo Industrial de Cubatão - São Paulo, com objetivo de caracterizar as anomalias geoelétricas associadas à presença dos hidrocarbonetos, bem como delimitar e cubar tais anomalias. Para tanto, utilizou-se o método da eletrorresistividade, por meio das técnicas de Sondagem Elétrica Vertical (SEV) e Imageamento Elétrico 3D. Os resultados obtidos permitem indicar que a presença de hidrocarboneto está associada a anomalias condutivas devido aos produtos da biodegradação. As anomalias condutivas ocorrem de forma disseminada na área, totalizando um volume de 1365,3 m³; entretanto, este volume corresponde somente à presença de contaminante em fase residual.
Resumo:
The objective of this work was to model and diagnose the spatial variability of soil load support capacity (SLSC) in sugar cane crop fields, as well as to evaluate the management impact on São Paulo State soil structure. The investigated variables were: pressure preconsolidation (sigma(p)), apparent cohesion () and internal friction angle (). The conclusions from the results were that the models and spatial dependence maps constitute important tools in the prediction and location of the mechanical internal strength of soils cultivated with sugar cane. They will help future soil management decisions so that soil structure sustainability will not be compromised.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Bioceramic systems based on hydroxylapatite (HAP) are an important class of bioactive materials that may promote bone regeneration. The aim of this research was to evaluate how the stoichiometry of HAP influences its microstructural properties when diagnosed using the combined Rietveld method and Maximum entropy method (MEM). The Rietveld Method (RM) is recognizably a powerful tool used to obtain structural and microstructural information of polycrystalline samples analyzed by x-ray diffraction. Latterly have combined the RM with the maximum entropy method (MEM), with the goal of improve structural refinement results. The MEM provides high resolution maps of electron density and their analysis leave the accurate localization of atoms inside of unit cell. Like that, cycles Rietveld-MEM allow an excellent structural refinement In this work, a hydroxylapatite sample obtained by emulsion method had its structure refined using one cycle Rietveld-MEM with x-ray diffraction data. The indices obtained in initial refinement was Rwp = 7.50%, Re = 6.56%, S - 1.14% e RB = 1.03%. After MEM refinement and electron densities maps analysis to correction of atomics positions, the news indicators of Rietveld refinement quality was Rwp = 7.35%, Re = 6.56%, S = 1.12% and RB = 0.75%. The excellent result obtained to RB shows the efficiency of MEM as auxiliary in the refinement of structure of hydroxylapatite by RM.
Resumo:
This study proposes the development of thermal and energy consumption maps to generate useful planning information. A residential neighbourhood in a medium-sized city was selected as the study area. In this area, 40 points were taken as urban reference points where air temperatures at the pedestrian level were collected. At the same time, rural temperatures made available by the city meteorological station were registered. Data of electrical energy consumption of the building units (houses and apartments) were collected through a household survey that was also designed to identify the users' income levels. Then, maps were developed so that the configuration of urban heat islands and electrical energy consumption could be visualised, compared and analysed. The results showed that the income level was the most important variable influencing electrical energy consumption. However, a strong relationship of the consumption with the thermal environment was also observed.