934 resultados para insect succession
Resumo:
Background: Up to 75% of crop species benefit at least to some degree from animal pollination for fruit or seed set and yield. However, basic information on the level of pollinator dependence and pollinator contribution to yield is lacking for many crops. Even less is known about how insect pollination affects crop quality. Given that habitat loss and agricultural intensification are known to decrease pollinator richness and abundance, there is a need to assess the consequences for different components of crop production. Methods: We used pollination exclusion on flowers or inflorescences on a whole plant basis to assess the contribution of insect pollination to crop yield and quality in four flowering crops (spring oilseed rape, field bean, strawberry, and buckwheat) located in four regions of Europe. For each crop, we recorded abundance and species richness of flower visiting insects in ten fields located along a gradient fromsimple to heterogeneous landscapes. Results: Insect pollination enhanced average crop yield between 18 and 71% depending on the crop. Yield quality was also enhanced in most crops. For instance, oilseed rape had higher oil and lower chlorophyll contents when adequately pollinated, the proportion of empty seeds decreased in buckwheat, and strawberries’ commercial grade improved; however, we did not find higher nitrogen content in open pollinated field beans. Complex landscapes had a higher overall species richness of wild pollinators across crops, but visitation rates were only higher in complex landscapes for some crops. On the contrary, the overall yield was consistently enhanced by higher visitation rates, but not by higher pollinator richness. Discussion. For the four crops in this study, there is clear benefit delivered by pollinators on yield quantity and/or quality, but it is not maximized under current agricultural intensification. Honeybees, the most abundant pollinator, might partially compensate the loss of wild pollinators in some areas, but our results suggest the need of landscape-scale actions to enhance wild pollinator populations.
Resumo:
Pollinator declines have raised concerns about the persistence of plant species that depend on insect pollination, in particular by bees, for their reproduction. The impact of pollinator declines remains unknown for species-rich plant communities found in temperate seminatural grasslands. We investigated effects of land-use intensity in the surrounding landscape on the distribution of plant traits related to insect pollination in 239 European seminatural grasslands. Increasing arable land use in the surrounding landscape consistently reduced the density of plants depending on bee and insect pollination. Similarly, the relative abundance of bee-pollination-dependent plants increased with higher proportions of non-arable agricultural land (e.g. permanent grassland). This was paralleled by an overall increase in bee abundance and diversity. By isolating the impact of the surrounding landscape from effects of local habitat quality, we show for the first time that grassland plants dependent on insect pollination are particularly susceptible to increasing land-use intensity in the landscape.
Resumo:
There is evidence that in Europe and North America many species of pollinators are in decline, both in abundance and distribution. Although there is a long list of potential causes of this decline, there is concern that neonicotinoid insecticides, in particular through their use as seed treatments are, at least in part, responsible. This paper describes a project that set out to summarize the natural science evidence base relevant to neonicotinoid insecticides and insect pollinators in as policy-neutral terms as possible. A series of evidence statements are listed and categorized according to the nature of the underlying information. The evidence summary forms the appendix to this paper and an annotated bibliography is provided in the electronic supplementary material.
Resumo:
Insect diversity may be declining even more rapidly than in plants and vertebrates, particularly in areas where indigenous habitats are replaced by an anthropogenic one. The most common component of anthropogenic greenspace is the ornamental lawn. Intensively managed and offering limited habitat opportunities for both plants and insects, lawns are biodiversity poor and ecologically insensitive. An alternative lawn format that positively influences biodiversity and reduces management requirements would be a useful tool in eco-friendly urban greenspace management. In investigating the potential for a forb-only alternative to the grass lawn we sampled both trial grass-free lawn formats and turf lawns to identify any influence that lawn composition and grass-free lawn specific mowing regimes might have on the abundance and diversity of insect families. In addition to the mowing regimes, both the composition and origin of lawn flora were found to significantly influence insect abundance and diversity and these factors rarely interacted. Native-only and mixed origin grass-free lawns hosted greater numbers of adult insects than found in turf and an equivalent diversity of insect families, however the mowing regime applied was distinct from traditional turf lawn management by being substantially less intensive and our results suggest that there is the potential for even greater abundance and diversity via the grass-free format that may offer additional resources to insectivorous garden species such as birds. When the composition of grass-free lawns included native forbs the diversity of insect families was found be sufficiently different from turf lawns to form distinct assemblages and in so doing contribute to beta diversity within urban greenspace. In sum, grass-free lawns may be a useful and aesthetically appropriate tool for adding value to the generally biodiversity poor urban lawnscape.
Resumo:
Traditionally, biosensors have been defined as consisting of two parts; a biological part, which is used to detect chemical or physical changes in the environment, and a corresponding electronic component, which tranduces the signal into an electronically readable format. Biosensors are used for detection of volatile compounds often at a level of sensitivity unattainable by traditional analytical techniques. Classical biosensors and traditional analytical techniques do not allow an ecological context to be imparted to the volatile compound/s under investigation. Therefore, we propose the use of behavioral biosensors, in which a whole organism is utilized for the analysis of chemical stimuli. In this case, the organism detects a chemical or physical change and demonstrates this detection through modifications of its behavior; it is the organism's behavior itself that defines the biosensor. In this review, we evaluate the use and future prospects of behavioral biosensors, with a particular focus on parasitic wasps.
Resumo:
Global food security, particularly crop fertilization and yield production, is threatened by heat waves that are projected to increase in frequency and magnitude with climate change. Effects of heat stress on the fertilization of insect-pollinated plants are not well understood, but experiments conducted primarily in self-pollinated crops, such as wheat, show that transfer of fertile pollen may recover yield following stress. We hypothesized that in the partially pollinator-dependent crop, faba bean (Vicia faba L.), insect pollination would elicit similar yield recovery following heat stress. We exposed potted faba bean plants to heat stress for 5 days during floral development and anthesis. Temperature treatments were representative of heat waves projected in the UK for the period 2021-2050 and onwards. Following temperature treatments, plants were distributed in flight cages and either pollinated by domesticated Bombus terrestris colonies or received no insect pollination. Yield loss due to heat stress at 30°C was greater in plants excluded from pollinators (15%) compared to those with bumblebee pollination (2.5%). Thus, the pollinator dependency of faba bean yield was 16% at control temperatures (18 to 26°C) and extreme stress (34°C), but was 53% following intermediate heat stress at 30°C. These findings provide the first evidence that the pollinator dependency of crops can be modified by heat stress, and suggest that insect pollination may become more important in crop production as the probability of heat waves increases.
Resumo:
Photorhabdus are highly effective insect pathogenic bacteria that exist in a mutualistic relationship with Heterorhabditid nematodes. Unlike other members of the genus, Photorhabdus asymbiotica can also infect humans. Most Photorhabdus cannot replicate above 34°C, limiting their host-range to poikilothermic invertebrates. In contrast, P. asymbiotica must necessarily be able to replicate at 37°C or above. Many well-studied mammalian pathogens use the elevated temperature of their host as a signal to regulate the necessary changes in gene expression required for infection. Here we use RNA-seq, proteomics and phenotype microarrays to examine temperature dependent differences in transcription, translation and phenotype of P. asymbiotica at 28°C versus 37°C, relevant to the insect or human hosts respectively. Our findings reveal relatively few temperature dependant differences in gene expression. There is however a striking difference in metabolism at 37°C, with a significant reduction in the range of carbon and nitrogen sources that otherwise support respiration at 28°C. We propose that the key adaptation that enables P. asymbiotica to infect humans is to aggressively acquire amino acids, peptides and other nutrients from the human host, employing a so called “nutritional virulence” strategy. This would simultaneously cripple the host immune response while providing nutrients sufficient for reproduction. This might explain the severity of ulcerated lesions observed in clinical cases of Photorhabdosis. Furthermore, while P. asymbiotica can invade mammalian cells they must also resist immediate killing by humoral immunity components in serum. We observed an increase in the production of the insect Phenol-oxidase inhibitor Rhabduscin normally deployed to inhibit the melanisation immune cascade. Crucially we demonstrated this molecule also facilitates protection against killing by the alternative human complement pathway.
Resumo:
The high dependence of herbivorous insects on their host plants implies that plant invaders can affect these insects directly, by not providing a suitable habitat, or indirectly, by altering host plant availability. In this study, we sampled Asteraceae flower heads in cerrado remnants with varying levels of exotic grass invasion to evaluate whether invasive grasses have a direct effect on herbivore richness independent of the current disturbance level and host plant richness. By classifying herbivores according to the degree of host plant specialization, we also investigated whether invasive grasses reduce the uniqueness of the herbivorous assemblages. Herbivorous insect richness showed a unimodal relationship with invasive grass cover that was significantly explained only by way of the variation in host plant richness. The same result was found for polyphagous and oligophagous insects, but monophages showed a significant negative response to the intensity of the grass invasion that was independent of host plant richness. Our findings lend support to the hypothesis that the aggregate effect of invasive plants on herbivores tends to mirror the effects of invasive plants on host plants. In addition, exotic plants affect specialist insects differently from generalist insects; thus exotic plants affect not only the size but also the structural profile of herbivorous insect assemblages.
Resumo:
The Atlantic Rain Forest, an important biodiversity hot spot, has faced severe habitat loss since the last century which has resulted in a highly fragmented landscape with a large number of small forest patches (<100 ha). For conservation planning it is essential to understand how current and future forest regeneration depends on ecological processes, fragment size and the connection to the regional seed pool. We have investigated the following questions by applying the forest growth simulation model FORMIND to the situation of the Atlantic Forest in the state of Sao Paulo, SE Brazil: (1) which set of parameters describing the local regeneration and level of density regulation can reproduce the biomass distribution and stem density of an old growth forest in a reserve? (2) Which additional processes apart from those describing the dynamics of an old growth forest, drive forest succession of small isolated fragments? (3) Which role does external seed input play during succession? Therefore, more than 300 tree species have been classified into nine plant functional types (PFTs), which are characterized by maximum potential height and shade tolerance. We differentiate between two seed dispersal modes: (i) local dispersal, i.e. all seedlings originated from fertile trees within the simulated area and (ii) external seed rain. Local seed dispersal has been parameterized following the pattern oriented approach, using biomass estimates of old growth forest. We have found that moderate density regulation is essential to achieve coexistence for a broad range of regeneration parameters. Considering the expected uncertainty and variability in the regeneration processes it is important that the forest dynamics are robust to variations in the regeneration parameters. Furthermore, edge effects such as increased mortality at the border and external seed rain have been necessary to reproduce the patterns for small isolated fragments. Overall, simulated biomass is much lower in the fragments compared to the continuous forest, whereas shade tolerant species are affected most strongly by fragmentation. Our simulations can supplement empirical studies by extrapolating local knowledge on edge effects of fragments to larger temporal and spatial scales. In particular our results show the importance of external seed rain and therefore highlight the importance of structural connectivity between regenerating fragments and mature forest stands. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The moss Tayloria dubyi (Splachnaceae) is endemic to the subantarctic Magallanes ecoregion where it grows exclusively on bird dung and perhaps only on feces of the goose Chloephaga picta, a unique habitat among Splachnaceae. Some species of Splachnaceae from the Northern Hemisphere are known to recruit coprophilous flies as a vector to disperse their spores by releasing intense odors mimicking fresh clung or decaying corpses. The flies land on the capsule, and may get in contact with the protruding mass of spores that stick to the insect body. The dispersal strategy relies on the spores falling off when the insect reaches fresh droppings or carrion. Germination is thought to be rapid and a new population is quickly established over the entire substrate. The objectives of this investigation were to determine whether the coprophilous T. dubyi attracts flies and to assess the taxonomic diversity of the flies visiting this moss. For this, fly traps were set up above mature sporophyte bearing populations in two peatlands on Navarino Island. We captured 64 flies belonging to the Muscidae (Palpibracus chilensis), Tachinidae (Dasyuromyia sp) and Sarcophagidae (not identified to species) above sporophytes of T. dubyi, whereas no flies were captured in control traps set up above Sphagnum mats nearby.
Resumo:
A new piggyBac-related transposable element (TE) was found in the genome of a mutant Anticarsia gemmatalis multiple nucleopolyhedrovirus interrupting an inhibitor of apoptosis gene. This mutant virus induces apoptosis upon infection of an Anticarsia gemmatalis cell line, but not in a Trichoplusia ni cell line. The sequence of the new TE (which was named IDT for iap disruptor transposon) has 2531 bp with two DNA sequences flanking a putative Transposase (Tpase) ORF of 1719 bp coding for a protein with 572 amino acids. These structural features are similar to the piggyBac TE, also reported for the first time in the genome of a baculovirus. We have also isolated variants of this new TE from different lepidopteran insect cells and compared their Tpase sequences.
Resumo:
Three plant proteinase inhibitors BbKI (kallikrein inhibitor) and BbCI (cruzipain inhibitor) from Bauhinia bouhinioides, and a BrTI (trypsin inhibitor) from B. rufa, were examined for other effects in Callosobruchus maculatus development; of these only BrTI affected bruchid emergence. BrTI and BbKI share 81% identities in their primary sequences and the major differences between them are the regions comprising the RGD and RGE motifs in BrTI. These sequences were shown to be essential for BrTI insecticidal activity, since a modified BbKI [that is a recombinant form (BbKIm) with some amino acid residues replaced by those found in BrTI sequence] also strongly inhibited insect development. By using synthetic peptides related to the BrTI sequence, YLEAPVARGDGGLA-NH(2) (RGE) and IVYYPDRGETGL-NH(2) (RGE), it was found that the peptide with an RGE sequence was able to block normal development of C. maculatus larvae (ED(50) 0.16% and LD(50) 0.09%), this being even more effective than the native protein. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
A radiometric zircon age of 285.4 +/- 8.6 Ma (IDTIMS U-Pb) is reported from a tonstein layer interbedded with coal seams in the Faxinal coalfield, Rio Grande do Sul, Brazil. Calibration of palynostratigraphic data with the absolute age shows that the coal depositional interval in the southern Parana Basin is constrained to the Sakmarian. Consequently, the basal Gondwana sequence in the southern part of the basin should lie at the Carboniferous-Permian boundary, not within the Sakmarian as previously considered. The new results are significant for correlations between the Parana Basin and the Argentinian Paganzo Basin (302 +/- 6 Ma and 288 +/- 7 Ma) and with the Karoo Basin, specifically with the top of the Dwyka Tillite (302 +/- 3 Ma and 299.2 +/- 3.2 Ma) and the lowermost Ecca Group (288 +/- 3 Ma and 289.6 +/- 3.8 Ma). The evidence signifies widespread latest Carboniferous volcanic activity in western Gondwana. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Insect digestive chymotrypsins are present in a large variety of insect orders but their substrate specificity still remains unclear. Ewer insect chymotrypsins from 3 different insect orders (Dictyoptera, Coleoptera and two Lepidoptera) were isolated using affinity chromatography. Enzymes presented molecular masses in the range of 20 to 31 kDa and pH optima in the range of 7.5 to 10.0. Kinetic characterization. using different, colorimetric and fluorescent substrates indicated that insect chymotrypsins differ from, bovine chymotrypsin in their primary specificity toward small substrates (like N-benzoyl-L-Tyr p-nitroanilide) rather than on their preference for large substrates (exemplified by Succynil-Ala-Ala-Pro-Phe P-nitroanilide). Chloromethyl ketones (TPCK, N-alpha-tosyl-L-Phe chloromethyl ketone and Z-GGF-CK, N-carbobenzoxy-Gly-Gly-phe-CK) inactivated all chymotrypsins legated. Inactivation rates follow apparent first-order kinetics with variable second order rates (TPCK, 42 to 130 M(-1)s(-1); Z-GGF-CK, 150 to 450 M(-1)s(-1) that may be remarkably low for S. frugiperda chymotrypsin (TPCK, 6 M(-1)s(-1); Z-GGF-CK, 6.1 M(-1) s(-1)). Homology modelling and sequence alignment showed that. in lepidopteran chymotrypsins, differences in the amino acid residues in the neighborhood of the catalytic His 57 may affect its pKa, value. This is Proposed as the cause of the decrease in His 57 reactivity toward chloromethyl ketones. Such amino acid replacement in the active site is proposed. to be an adaptation to the presence of dietary ketones. (C) 2009 Wiley Periodicals, Inc.