971 resultados para industrial services
Resumo:
The numerical modelling of electromagnetic waves has been the focus of many research areas in the past. Some specific applications of electromagnetic wave scattering are in the fields of Microwave Heating and Radar Communication Systems. The equations that govern the fundamental behaviour of electromagnetic wave propagation in waveguides and cavities are the Maxwell's equations. In the literature, a number of methods have been employed to solve these equations. Of these methods, the classical Finite-Difference Time-Domain scheme, which uses a staggered time and space discretisation, is the most well known and widely used. However, it is complicated to implement this method on an irregular computational domain using an unstructured mesh. In this work, a coupled method is introduced for the solution of Maxwell's equations. It is proposed that the free-space component of the solution is computed in the time domain, whilst the load is resolved using the frequency dependent electric field Helmholtz equation. This methodology results in a timefrequency domain hybrid scheme. For the Helmholtz equation, boundary conditions are generated from the time dependent free-space solutions. The boundary information is mapped into the frequency domain using the Discrete Fourier Transform. The solution for the electric field components is obtained by solving a sparse-complex system of linear equations. The hybrid method has been tested for both waveguide and cavity configurations. Numerical tests performed on waveguides and cavities for inhomogeneous lossy materials highlight the accuracy and computational efficiency of the newly proposed hybrid computational electromagnetic strategy.
Resumo:
With the growth of high-technology industries and knowledge intensive services, the pursuit of industrial competitiveness has progressed from a broad concern with the processes of industrialisation to a more focused analysis of the factors explaining cross-national variation in the level of participation in knowledge industries. From an examination of cross-national data, the paper develops the proposition that particular elements of the domestic science, technology and industry infrastructure—such as the stock of knowledge and competence in the economy, the capacity for learning and generation of new ideas and the capacity to commercialise new ideas—vary cross-nationally and are related to the level of participation of a nation in knowledge intensive activities. Existing understandings of the role of the state in promoting industrial competitiveness might be expanded to incorporate an analysis of the contribution of the state through the building of competencies in science, technology and industry. Keywords: Knowledge; economy; comparative public policy; innovation; science and technology policy