943 resultados para hypercapnia, respiratory depression, central inhibition


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Apocynin has been used as an efficient inhibitor of the NADPH oxidase complex and its mechanism of inhibition is linked to prior activation through the action of peroxidascs. Here we studied the oxidation of apocynin catalyzed by myeloperoxidase (MPO) and activated neutrophils. We found that apocynin is easily oxidized by MPO/H2O2 or activated neutrophils and has as products dimer and trimer derivatives. Since apocynin impedes the migration of the cytosolic component p47phox to the membrane and this effect could be related to its conjugation with essential thiol groups, we studied the reactivity of apocynin and its MPO-catalyzed oxidation products with glutathione (GSH). We found that apocynin and its oxidation products do not react with GSH. However, this thiol compound was efficiently oxidized by the apocynin radical during the MPO-catalyzed oxidation. We suggest that the reactivity of apocynin radical with thiol compounds could be involved in the inhibitory effect of this methoxy-catechol on NADPH oxidase complex. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In patients with acute respiratory distress syndrome, positive end-expiratory pressure is associated with alveolar recruitment and lung hyperinflation despite the administration of a low tidal volume. The best positive end-expiratory pressure should correspond to the best compromise between recruitment and distension, a condition that coincides with the best respiratory elastance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Some properties of the volatile anesthetics, such as vasodilatation and myocardial depression, combined with the sympathetic inhibition that alpha 2-agonists can produce may determine hemodynamic alterations during aortic, surgery. The interaction between dexmedetomidine (DEX), an alpha 2-agonist, and sevoflurane during aortic surgery is unknown. We studied the effects of DEX on hemodynamics and systemic oxygenation during aortic cross-clamping (Aox) and unclamping (UAox) in sevoflurane-anesthetized dogs Twenty dogs were. anesthetized with sevoflurane and were randomly assigned to two groups prior to Aox and UAox: control, n = 10, received saline infusion only, and DEX (1 mu g.kg(-1) load followed by 1 mu g.kg(-1).h(-1) infusion), n = 10. Hemodynamic and oxygenation variables were measured at baseline, after saline or DEX loading dose, 20 and 40 min after Aox, and 20 and 40 min after UAox. After DEX administration, heart rate, cardiac index l and systemic oxygen transport index (131021) were lower than in control group. Aox increased mean arterial pressure (MAP) and systemic vascular resistance index (SVRI) in both groups, but the effects were greater with DEX. Cl, heart rate, and DO(2)I were lower, while central venous pressure (CVP) and pulmonary artery occlusion pressure were higher in DEX compared to control. After UAox, MAP, CVP and SVRI were maintained higher in DEX in relation to control. We conclude that in sevoflurane-anesthetized dogs DEX alters the cardiovascular response during aortic surgery.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Study Design. Case-control study.Objective. To evaluate respiratory muscle force in children with myelomeningocele. Summary of Background Data. Myelomeningocele is a common spinal cord malformation with limitations linked to central nervous system lesions and abnormalities in respiratory movements. Despite this, little attention has been given to evaluating respiratory muscle force in these patients.Methods. Children with myelomeningocele aged between 4 and 14 years ( myelomeningocele group; MG, n = 20) were studied and compared with healthy children ( control group; CG, n = 20) matched for age and gender. Respiratory muscular force was evaluated by maximum inspiratory ( Pimax) and expiratory ( Pemax) pressures.Results. Groups were similar for age [ CG = 8 ( 6 - 13) = MG = 8 ( 4 - 14), P > 0.05]; gender, and body mass index [ CG = 17.4 ( 14.1 - 24.7) x MG = 19.2 ( 12.6 - 31.9), P > 0.05]. The lumbosacral region was predominantly affected ( 45%). Maximum respiratory pressures were significantly higher in CG than MG ( Pimax = CG: similar to 83 +/- 21.75 > MG: -54.1 +/- 23.66; P < 0.001 and Pemax = CG: + 87.4 +/- 26.28 > MG: + 64.6 +/- 26.97; P = 0.01). Patients with upper spinal lesion ( UL) had lower maximum respiratory pressure values than those with lower spinal lesion ( LL), [Pimax ( UL = - 38.33 +/- 11.20 cm H2O x LL = - 60.85 +/- 24.62 cm H2O), P < 0.041 and Pemax ( UL = + 48 +/- 20.82 cm H2O x LL + 71.71 +/- 26.73 cm H2O), P = 0.067]).Conclusion. Children with myelomeningocele at the ages studied presented reduced respiratory muscle force with more compromise in upper spinal lesion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Linfoma multicêntrico foi diagnosticado em um cão com dois anos de idade que apresentava insuficiência respiratória, aumento de volume abdominal (ascite) e linfoadenopatia generalizada. O exame imunoistoquímico revelou origem de células T com expressão CD3+ e CD79-. Após cinco semanas, o cão apresentou déficits neurológicos progressivos, sendo identificada a presença de linfócitos neoplásicos no líquor. O exame histopatológico demonstrou invasão de células neoplásicas no baço, linfonodos, cérebro e cerebelo.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Non-adrenergic ligands that bind to imidazoline receptors (I-R), a selective ligand that binds to alpha2-adrenoceptors (alpha2-AR) and mixed ligands that bind to both receptors were tested for their action on water intake behavior of 24-h water-deprived rats. All drugs were injected into the third cerebral ventricle. Except for agmatine (80 nmol), mixed ligands binding to I-R/alpha2-AR such as guanabenz (40 nmol) and UK 14304 (20 nmol) inhibited water intake by 65% and up to 95%, respectively. The selective non-imidazoline alpha2-AR agonist, alpha-methylnoradrenaline, produced inhibition of water intake similar to that obtained with guanabenz, but at higher doses (80 nmol). The non-adrenergic I-R ligands histamine (160 nmol, mixed histaminergic and imidazoline ligand) and imidazole-4-acetic acid (80 nmol, imidazoline ligand) did not alter water intake. The results show that selective, non-imidazoline alpha2-AR activation suppresses water intake, and suggest that the action on imidazoline sites by non-adrenergic ligands is not sufficient to inhibit water intake.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Burrowing mammals usually have low respiratory sensitivity to hypoxia and hypercapnia. However, the interaction between ventilation (V), metabolism and body temperature (Tb) during hypoxic-hypercapnia has never been addressed. We tested the hypothesis that Clyomys bishopi, a burrowing rodent of the Brazilian cerrado, shows a small ventilatory response to hypoxic-hypercapnia, accompanied by a marked drop in Tb and metabolism. V, Tb and O-2 consumption (VO2) of C. bishopi were measured during exposure to air, hypoxia (10% and 7% O-2), hypercapnia (3% and 5% CO2) and hypoxic-hypercapnia (10% O-2 + 3% CO2). Hypoxia of 7% but not 10%, caused a significant increase in V, and a significant drop in Tb. Both hypoxic levels decreased VO2 and 7% O-2 significantly increased V/VO2. Hypercapnia of 5%, but not 3%, elicited a significant increase in V, although no significant change in Tb, VO2 or V/VO2 was detected. A combination of 10% O-2 and 3% CO2 had minor effects on V and Tb, while VO2 decreased and V/VO2 tended to increase. We conclude that C. bishopi has a low sensitivity not only to hypoxia and hypercapnia, but also to hypoxic-hypercapnia, manifested by a biphasic ventilatory response, a drop in metabolism and a tendency to increase V/VO2. The effect of hypoxic-hypercapnia was the summation of the hypoxia and hypercapnia effects, with respiratory responses tending to have hypercapnic patterns while metabolic responses, hypoxic patterns. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In most reptiles, the ventilatory response to hypercapnia consists of large increases in tidal volume (V-T), whereas the effects on breathing frequency (f(R)) are more variable. The increased V-T seems to arise from direct inhibition of pulmonary stretch receptors. Most reptiles also exhibit a transitory increase in ventilation upon removal of CO2 and this post-hypercapnic hyperpnea may consist of changes in both V-T and f(R). While it is well established that increased body temperature augments the ventilatory response to hypercapnia, the effects of temperature on the post-hypercapnic hyperpnea is less described. In the present study, we characterise the ventilatory response of the agamid lizard Uromastyx aegyptius to hypercapnia and upon the return to air at 25 and 35 degreesC. At both temperatures, hypercapnia caused large increases in V-T and small reductions in f(R), that were most pronounced at the higher temperature. The post-hypercapnic hyperpnea, which mainly consisted of increased fR, was numerically larger at 35 compared to 25 degreesC. However, when expressed as a proportion of the levels of ventilation reached during steady-state hypercapnia, the post-hypercapnic hyperpnea was largest at 25 degreesC. Some individuals exhibited buccal pumping where each expiratory thoracic breath was followed by numerous small forced inhalations caused by contractions of the buccal cavity. This breathing pattern was most pronounced during severe hypercapnia and particularly evident during the post-hypercapnic hyperpnea. (C) 2002 Published by Elsevier B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Digestion affects acid-base status, because the net transfer of HCl from the blood to the stomach lumen leads to an increase in HCO3- levels in both extra- and intracellular compartments. The increase in plasma [HCO3-], the alkaline tide, is particularly pronounced in amphibians and reptiles, but is not associated with an increased arterial pH, because of a concomitant rise in arterial Pco(2) caused by a relative hypoventilation. In this study, we investigate whether the postprandial increase in Paco(2) of the toad Bufo marinus represents a compensatory response to the increased plasma [HCO3-] or a state-dependent change in the control of pulmonary ventilation. To this end, we successfully prevented the alkaline tide, by inhibiting gastric acid secretion with omeprazole, and compared the response to that of untreated toads determined in our laboratory during the same period. In addition, we used vascular infusions of bicarbonate to mimic the alkaline tide in fasting animals. Omeprazole did not affect blood gases, acid-base and haematological parameters in fasting toads, but abolished the postprandial increase in plasma [HCO3-] and the rise in arterial Pco(2) that normally peaks 48 h into the digestive period. Vascular infusion of HCO3-, that mimicked the postprandial rise in plasma [HCO3-], led to a progressive respiratory compensation of arterial pH through increased arterial Pco(2) Thus, irrespective of whether the metabolic alkalosis is caused by gastric acid secretion in response to a meal or experimental infusion of bicarbonate, arterial pH is being maintained by an increased arterial Pco(2). It seems, therefore, that the elevated Pco(2), occuring during the postprandial period, constitutes of a regulated response to maintain pH rather than a state-dependent change in ventilatory control. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Acting in the hypothalamus, tumor necrosis factor-alpha (TNF-alpha) produces a potent anorexigenic effect. However, the molecular mechanisms involved in this phenomenon are poorly characterized. In this study, we investigate the capacity of TNF-alpha to activate signal transduction in the hypothalamus through elements of the pathways employed by the anorexigenic hormones insulin and leptin. High dose TNF-a promotes a reduction of 25% in 12 h food intake, which is an inhibitory effect that is marginally inferior to that produced by insulin and leptin. In addition, high dose TNF-a increases body temperature and respiratory quotient, effects not reproduced by insulin or leptin. TNF-alpha, predominantly at the high dose, is also capable of activating canonical pro-inflammatory signal transduction in the hypothalamus, inducing JNK, p38, and NF kappa B, which results in the transcription of early responsive genes and expression of proteins of the SOCS family. Also, TNF-a activates signal transduction through JAK-2 and STAT-3, but does not activate signal transduction. through early and intermediary elements of the insulin/leptin signaling pathways such as IRS-2, Akt, ERK and FOXO1. When co-injected with insulin or leptin, TNF-a, at both high and low doses, partially impairs signal transduction through IRS-2, Akt, ERK and FOXO1 but not through JAK-2 and STAT-3. This effect is accompanied by the partial inhibition of the anorexigenic effects of insulin and leptin, when the low, but not the high dose of TNF-alpha is employed. In conclusion, TNF-alpha, on a dose-dependent way, modulates insulin and leptin signaling and action in the hypothalamus. (c) Published by Elsevier B.V.